
    Advanced search 

Linux Journal Issue #20/December 1995

Features

Using Linux at SSC/Linux Journal  by Kevin Pierce
Find out how SSC uses Linux to produce all of its products,
including this magazine.

Index of LJ Articles  
A complete listing of articles from issues 1-19.

LJ Readers' Choice  
Linux Journal readers rank their favorite Linux-related products.

News & Articles

Linux System Administration   Adding a New Disk to a Linux
System  by Æleen Frisch
PracTcl Programming Tips: It's All a Matter of Timing  by Stephen
Uhler

Reviews

Product Review   Caldera Network Desktop Preview 1  by Roger
Scrafford
Book Review   The Future Does Not Compute  by Danny Yee

Columns

Letters to the Editor  
Stop the Presses   Just Browsing  by Phil Hughes
Take Command   Finding Files and More  by Eric Goebelbecker

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/020/0086.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/0086.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/0087.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/0087.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/2870.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/2870.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1169.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1169.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1186.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1151.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1185.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/2871.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1187.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1180.html


New Products  
Kernel Korner   : Porting Linux to the DEC Alpha: The User
Environment  by Jim Paradis

Archive Index 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/020/2872.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1178.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/1178.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux in the Real World

Kevin Pierce

Issue #20, December 1995

Find out how SSC uses Linux to produce all of their products, including this
magazine. 

When I came to SSC (publishers of Linux Journal), I was told the first thing I had
to do was learn the computer system. Having never been exposed to Unix, I set
out to discover as much as I could. Coming from an MS-Windows environment,
I had a lot to learn. The more I learned about the system we use, the more
questions I asked. Here is what I found out. 

The first thing I noticed was the multi-tasking capabilities of Linux (I'm not even
going to get into Win95). Everyone at SSC has a Linux system (workstation) at
their desk, which they log into every morning. In addition, there are two non-
Linux systems in the office: a Windows for Workgroups system used for
graphics and magazine layout and a Unix System V, Release 4.2 system used to
run the Progress database, which has not yet been ported to Linux.

Once logged onto their local system, users can perform tasks locally (such as
reading electronic mail) or access the other computers via rlogin, telnet, ftp,
and so on.

Our Network

All of the workstations are linked via a thin Ethernet backbone, except for a few
which are connected via twisted pair Ethernet to a twisted pair hub, which is
then connected to the thinnet backbone.

The main backbone ends at the Orion Firewall System that sits between the
internal network and a second, externally visible network that connects to the
Internet through a Xyplex router and a CSU/DSU (also known as a “digital
modem”) over a T1 Frame Relay connection to our Internet Service Provider,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Alternate Access, Inc. Our Web server, www.ssc.com, is also on this externally
visible network, outside our firewall.

There is a third network in the office. The Windows for Workgroups (WfW)
machine is on this network with one Linux system also connected to the regular
internal network. This setup keeps the large amount of traffic between the WfW
system and the Linux system (which drives the Imagesetter) from bogging
down the main network.

Network Management

Often, in a multi-user environment like ours, every computer has a unique
password file, local to that system. If someone wants to change their password,
they have to log into every system individually to make the change office-wide.
All of our systems instead use NIS (Network Information Service) to centrally
manage all password and group files, access permissions, host address
information, and data on a single server. NIS distributes a single master
password file to all the systems transparently. Since the network is running NFS
(the Network File System), files can be accessed between systems easily. This is
easier for both the user and the administrator.

SSC uses sendmail as its mail daemon to monitor and manage the delivery of
all electronic mail messages. Sendmail is the de facto standard Mail Transfer
Agent (MTA) for most complicated networks. Although it is not easy to
configure, it is the most configurable and most flexible of all the mail daemons
available. It determines whether each e-mail address is local or remote, delivers
local e-mail locally, and sends remote e-mail to remote systems via the Internet
(using SMTP, the Simple Mail Transfer Protocol) or UUCP (described later).

All outgoing mail at SSC is routed through a single workstation for delivery via
sendmail. This centralizes the e-mail system so there is only one log file, one
daemon, one thing to break and be fixed. Incoming mail is queued on the Web
server outside the Orion firewall system with smap, a secure mail queue
program. Smap acts like a normal mail daemon and queues mail. Then smap
calls sendmail to process the queued mail, sending it to the real internal hub
for local delivery. The smap client implements a minimal version of SMTP,
accepting messages from over the network and writing them to the disk for
future delivery by smapd. Like anonymous ftp, smap is designed to run under
chroot, except it also runs as a non-privileged process to overcome potential
security risks presented by privileged mailers running where they can be
accessed over a network. Sendmail still runs, but only when it's told to, instead
of all the time.



UUCP (Unix-to-Unix copy) delivered mail is also forwarded to the sendmail hub
via smap. Sendmail then sorts the regular SMTP mail from the UUCP delivered
mail. The SMTP mail is delivered locally and the UUCP delivered mail is spooled
in directories where the UUCP system can find them. Since the modems which
deliver the spooled UUCP delivered mail to local recipients are on the Web
server, which is on the externally-visible network, these files are transfered
from the internal system to the Web server with tar and scp, a secure version of
the rcp (remote copy) command.

tar (tape archive) and scp (secure copy) are used every three hours to transfer
the mail automatically to the Web server. The mail is then deleted from the
local workstation to avoid duplication.

By handling mail this way, only one machine, the Web server, needs to have a
modem and access/exposure to the outside world, and the line doesn't need to
remain open.

PPP (Point-to-Point Protocol) service allows employees remote dial-in access
outside the firewall by the Web server. Users then access the internal network
(and their own desktop workstations, if they wish) using ssh, a secure shell that
encrypts all the data sent between the internal workstation being accessed and
the Web server. Employees can also use ssh to get from their home computers
to the Web server ensuring a completely secure line, or telnet if they don't have
ssh on their home machines.we

All the user home directories at SSC, as well as the local binaries directory, are
shared via NFS (Network File System) between all workstations. With the
current system, every time users want to read files in their home directory, the
files must be transferred across the network to their computers. Soon we will
be moving all the user directories from the office file server to each user's own
workstation for the following reasons:

• Transferring file across the network is much slower than transfering them
from the local hard drives, making file access slower.

• Also the network has a limited amount of bandwidth (amount of
information it can carry at one time), and eliminating unnecessary use will
speed up the network.

The Web Server

SSC's Web server is an AMD 486DX4/100 machine running Linux and the
Apache server software. The server contains SSC's catalog and product
information, as well as information on Linux Journal, including covers and
tables of contents from all issues, selected articles from some issues, and



advertiser indices. We also offer space for sale to Linux Journal and WEBsmith
advertisers if they need a home for their Web pages.

One of the big advantages of Apache is that it can appear to be different
servers with different domain names and IP addresses—that is, it is “multi-
homed”. This makes it possible for our single computer running one Web
server to serve as the Web server for Zebu Systems, L.L.C. (http://
www.zebu.com/) and Cucumber Information Systems (http://
www.cucumber.com/) as well.

The server has been in operation since May and accesses continue to increase.
We are currently receiving around 35,000 hits per day. Apache is very efficient
and reliable. Even with only 16MB of RAM on the machine, we seldom see a
load average of over 0.2. This means there is an average of one process waiting
to run 20% of the time, and the rest of the time the machine is idle.

Keeping the Web server outside of the Orion Firewall System keeps the internal
network safe in the event the Web server is compromised. The Web server is
mirrored from the internal network so that if it is compromised, it can be
restored easily.

SSC Computer Schematic

Printing

Most of the printing we do at SSC is done using PostScript:

PostScript is a Page Description Language (PDL) developed by Adobe Systems,
Inc. PostScript tells any printer which has PostScript built in, how to print a page
that consists of text and/or graphics. The page must be generated by software
that includes a driver which converts the page into PostScript code; the code, in
turn, is translated by the printer. PostScript is the de facto PDL standard for
high-end desktop publishing because, among other reasons, it can operate
across a range of platforms, is very precise, and has color capabilities. Holt and
Morgan—UNIX: An Open Systems Dictionary.

Text files, such as invoices, that we need to print out are done in ASCII. They are
sent to one of the dot matrix printers, or the one laser printer reserved for
printing plain text.

We have seven printers on the network, shared via lpd. Users can select their
default printer by setting their PRINTER environment variable.

http://www.cucumber.com
http://www.cucumber.com
https://secure2.linuxjournal.com/ljarchive/LJ/020/0086f1.html


Many of the printers are selected based on their location relative to the person
using them. Others may be selected because of their speed. One special
printer, a Tektronix Phaser III PXi is a wax-transfer color PostScript printer. This
is used for producing color proofs of SSC products, magazine covers and pages,
and other graphics such as Web pages.

Database

The database we use, Progress, isn't available for Linux. Therefore, the
database is run on a Unix System V, release 4.2 system. Progress is run in
character mode, and users access the database via rlogin or telnet from their
Linux workstations.

This database is used to store all customer and vendor-related information.
This includes customer contacts, subscription information, sales transactions,
reader service leads, the Linux consultants directory and a whole lot more. We
are in the process of moving advertising booking to this database as well. Other
small databases (article tracking, for example) are written in Perl and run on
Linux systems.

We have used Progress for years. (We used to run the whole office on a Xenix
system.) If we had it to do all over again, we would select a database
methodology that would make it possible to run everything on Linux and not
have a foreign Unix system in the network. While it is not a reliability problem, it
does mean we have to support another operating system.

Magazine Production

When I tell people I work for a publishing company, many ask, “Are you using a
Macintosh for your layout?” The answer is “no”. We use Quark Express and
Corel Draw! on Windows for Workgroups and tie the process directly into our
Linux network. In order to explain this, let's examine the magazine production
process from start to finish.

First, Michael K. Johnson, the editor, finds people to write articles for Linux
Journal on various topics. Note that Michael is located in North Carolina, while
the remainder of SSC's staff is located in Seattle. This means that Michael uses
his local Linux systems to do much of his work and uses his Internet connection
to access machines in Seattle. When the articles are sent in (via e-mail), Michael
edits them and sends them to our production editor in Seattle. At this point the
articles that he sends are in Quark Tag Format—ASCII text with various escape
sequences added to them to indicate paragraph types, font changes, and other
formatting. We are currently developing a new language closely related to
HTML (HyperText Markup Language), the language of the World Wide Web.



Once this language is complete, we will be able to automatically translate
articles into Quark Tag Format for layout and into HTML for addition to our
Web site.

The production editor files the articles, runs some basic checks [like spelling;
yours truly can't be trusted to spell anything right—ED] and prints them out in
preparation for our copy editors. The print process is done using a shell script
that uses sed and awk to translate the Quark tagged file into troff source and
pipes the result through groff to produce a reasonable approximation of what
the article will look like when it is imported into Quark and printed.

Articles returned from copy editors are then reviewed by the production editor
and changes are made as needed. This step sometimes involves contacting the
author for clarification—a step that is generally carried out via e-mail.

The final version of the articles are slightly modified by another shell script
which like the first, uses sed and awk to do its work. This is necessary because
Quark requires that paragraphs be one continuous line. Also there are some
particularly awful Quark escape sequences that we have aliased to simpler
escape sequences which need to be converted to the real sequences in order
to be interpreted correctly by Quark. These modified files are written to a
location on the Linux filesystem that can be accessed directly by the WfW
system.

Our layout is done using Quark Express on our WfW system. Once the ads are
placed, the articles are put in. The result of the first layout process is a semi-
complete magazine. A copy is printed locally on the Tektronix printer for review,
and a PostScript image is written to a Linux filesystem so Michael can download
it and print it in North Carolina. The locally-printed copy is printed from the
WfW machine on a Linux-connected printer; this is much faster than directly
connecting the printer to the WfW system, as was originally done.

The production editor merges the changes from Michael and the other
reviewers and sends them back to layout for final changes. If the changes are
extensive, the article may be re-edited as text using vi or emacs on a Linux
system and re-submitted to layout.

After the second layout step, a paper copy of the magazine is printed for review
by our proofreader. Changes from this cycle are made, and the layout system
outputs a PostScript image of the magazine (in 2 to 8-page chunks) to a Linux
filesystem connected to the imagesetter.



Samba

Although the layout system is running WfW and typesetting is running Linux,
the file transfer is completely transparent to both departments, just like
printing. This is made possible by Samba.

In the most basic sense, everything in the office uses TCP/IP as the underlying
protocol. Windows for Workgroups speaks SMB (Session Message Block
protocol), a protocol which uses TCP/IP. In order for Linux to speak SMB, we run
Samba. Samba is a free implementation of the SMB protocol for Unix. It was
developed by Andrew Tridgell in 1992 in an attempt to mount disk space from a
Sun to a PC running Pathworks. [See Linux Journal Issue 7 for an account of
Samba's development—ED] The Linux filesystem appears as network drives to
WfW.

So Samba is used to seamlessly transfer the PostScript files from the WfW
system to the Linux machine that drives the AGFA imagesetter. This is
essentially a camera with a laser instead of a lens; it uses the laser to expose a
large sheet of photographic film. There is one sheet of film for each black and
white page and four sheets of film for each color page. This film is what is
mailed to the printing company.

Once a magazine is finished, the files are archived on an Iomega Zip drive via
Samba. The Zip drive is a removable 100 MB magnetic disk drive, much like a
monster floppy, which is connected through a SCSI interface to the same Linux
workstation that connects to the imagesetter. It connects to any SCSI-2
controller and acts like any other SCSI device. It is slightly slower than a typical
hard drive but faster than some old MFM/RLL drives.

The ZIP disks are mounted on the Linux system like any other Linux filesystem.
Linux views the new drive as a mounted partition of an existing drive. It can
then be added to the Windows for Workgroups system, where the ZIP drive is
seen as another network drive.

Other SSC Products

Besides Linux Journal, SSC publishes a series of books and references, primarily
on Linux and Unix. Most of these products are done using troff and/or groff.
The exceptions are the LDP (Linux Documentation Project) books, which are
done in LaTeX, and the Internet Public Access Guide, which was done in Quark
Express.

Again, we produce film directly at SSC to ship to the printer. One of the more
interesting recent innovations was the ability to produce spot color separations
using groff. This came about when we were updating the Korn Shell Reference.



This card is in four colors. Besides the additional cost of having the printer
produce the separations it was going to be very hard to proof a multi-color card
if only black and white output was available.

Work on the part of Arnold Robbins and SSC staff produced an easy way to
write the color changes directly in the groff source. With two targets in the
Makefile, one for printing the color output and one for producing the color-
separated film, we were able to accomplish the desired task. These changes
require groff and won't work with troff, since they are done by including raw
PostScript commands in the groff source.

Many people may be asking why we continue to produce products using what
many consider outdated tools. For those who really use the Unix environment,
groff offers some advantages. For example, many of our recent products have
been written by authors located far away from our Seattle offices. By using
groff, we can send small ASCII files and use tools like diff to only send changes
between locations. It also means we don't need multiple copies of expensive
layout programs to accomplish the task.

Yes, We Use DOS Too

Our office manager uses QuickBooks to do our accounting. Why? Because it
was available and inexpensive. She uses DOSemu on her Linux workstation for
this task, allowing her to quickly switch back and forth between QuickBooks
and, for example, her e-mail. In the future we hope to convert this task over to
some software that runs on Linux, but for the moment, this offers a reasonable
solution.

What's Next?

We have much planned for Linux in the future. For example, we currently do
credit card verification off-line. We hope to write the necessary software to do
this directly from a Linux system. We also hope that Progress will be ported to
Linux. If this doesn't happen we will probably re-write our database system
using a database that runs on Linux.

In conclusion, no, we don't use Linux for everything. But we come pretty close.
Linux has proven inexpensive, easily expandable and reliable. For those who
thought we didn't use Linux to produce the magazine, now you know. With all
but one of our employees sitting at a Linux console every day, I think we
practice what we preach rather well.



Resources

Some of the tools mentioned in this article may not have been included with
your Linux distribution.

• NIS: Documentation is available from sunsite.unc.edu/mdw/HOWTO/NIS-
HOWTO.html and binaries are available via ftp from sunsite.unc.edu in /
pub/Linux/system/Network/admin/yp-clients.tar.gz.

• Orion: This firewall was available for purchase from Zebu Systems, http://
www.zebu.com or (206)-781-9566 and is based on the Mazama Packet
Filter software, www.mazama.com.

• smap: smap is part of the Trusted Information System's Firewall Toolkit at
ftp://ftp.tis.com/pub/firewalls/toolkit/.

• ssh: ssh has a home page at www.cs.hut.fi/ssh/.
• Samba: Samba has a home page at lake.canberra.edu.au/pub/samba/

samba.html.
• Apache: Apache has a home page at www.apache.org.
• xv: xv is available with some Linux distributions, and is available via ftp

from ftp.cis.upenn.edu in /pub/xv/.

LaTeX, groff, sendmail, tar, diff, and other utilities mentioned in this article
should be included with your Linux distribution.

Kevin Pierce is a Marketing Assistant at SSC. He grew up in New Hampshire,
went to school at Florida State University, and reserves most Saturday
afternoons for college football.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://sunsite.unc.edu/mdw/HOWTO/NIS-HOWTO.html
http://sunsite.unc.edu/mdw/HOWTO/NIS-HOWTO.html
http://www.mazama.com
http://www.cs.hut.fi/ssh/
http://lake.canberra.edu.au/pub/samba/samba.html
http://lake.canberra.edu.au/pub/samba/samba.html
http://www.apache.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux Journal Archives

LJ Staff

Issue #20, December 1995

We here at Linux Journal believe in empowerment, and giving people the tools
to the job themselves, so we are proud to present the LJ Archives. 

We get a lot of e-mail that begins “I am looking for that article, you know the
one, about froodling the dewhacker?” We here at Linux Journal believe in
empowerment, and giving people the tools to the job themselves, so we are
proud to present the LJ Archives. You will find below a listing of the articles that
we have published, and information on where to find them. Some are available
on our Web site, and we have provided the URL for you. Others are not yet
electronic, and if you can't wait, the issue number is listed so that you can order
back issues. There is also a new feature on the Web site, an interactive search
page for articles in Linux Journal. (www.linuxjournal.com/). 

Features

• Comparison of Linux, DOS/Win and OS/2 Issue: 1 Page: 1 Author: Bernie
Thompson

• Linux Code Freeze Issue: 1 Page: 1 Author: Linus Torvalds
• Interview With Linus Issue: 1 Page: 4 Author: Robert Young

• Formation of the XFree86 Project, Inc. Issue: 2 Page: 1 Author: LJ Staff

• Interview With Patrick Volkerding Issue: 2 Page: 10 Author: Phil Hughes
• Optimizing Linux Disk Usage Issue: 2 Page: 1 Author: Jeff Tranter
• World Wide Web Issue: 3 Page: 9 Author: Bernie Thompson
• Optimizing Memory Usage Issue: 3 Page: 11 Author: Jeff Tranter
• Sendmail+IDA Issue: 3 Page: 30 Author: Vince Skahan
• Interview with Fred Van Kempen Issue: 3 Page: 16 Author: Phil Hughes
• EZ as a Word Processor Issue: 4 Page: 5 Author: Terry Gliedt
• Disaster Recovery Issue: 4 Page: 10 Author: Mark Komarinski

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/


• Wine Issue: 4Page: 14 Author: Bob Amstadt
• Eagles BBS Issue: 4 Page: 16 Author: Ray Rocker
• Linux Does Comics Issue: 4 Page: 26 Author: Robert Suckling
• Emacs, Friend or Foe? Issue: 5 Page: 9 Author: Matt Welsh
• Interview With James MacLean Issue: 5 Page: 15 Author: Michael K.

Johnson
• EZ for the Programmer Issue: 5 Page: 5 Author: Terry Gliedt
• Linux in the Trenches Issue: 5 Page: 21 Author: G. Wettstein
• Messages, A Multi-Media Mailer Issue: 6 Page: 7 Author: Terry Gliedt
• Mobile Computing with Linux Issue: 6 Page: 17 Author: Mark Fiuczynski
• Learning C++ With Linux Issue: 6 Page: 24 Author: Jeff Tranter
• The Joy (and Agony) of SLIP Issue: 6 Page: 30 Author: Warren Baird
• Tutorial, Emacs for Programmers Issue: 6 Page: 39 Author: Matt Welsh
• Making the Most of Andrew Issue: 7 Page: 7 Author: Terry Gliedt
• Report from the Front: Linux in Antarctica Issue: 7 Page: 11 Author:

Andrew Tridgell
• Samba: Unix Talking With PCs Issue: 7 Page: 22 Author: Andrew Tridgell
• Linux Performance Tuning Issue: 7 Page: 26 Author: Clarence Smith
• Introducing Modula-3 Issue: 8 Page: 9 Author: Geoff Wyant
• X Window System Programming with Tcl and Tk Issue: 8 Page: 24 Author:

Matt Welsh
• Linux Command Line Parameters Issue: 8 Page: 35 Author: Jeff Tranter

• What is a Linux? Issue: 8 Page: 59 Author: LJ Staff

• Linus Torvalds in Sydney Issue: 8 Page: 60 Author: Jamie Honan
• A Conversation with Linus Torvalds Issue: 9 Page: 8 Author: Belinda

Frazier
• Connecting Your Linux Box to the Internet Issue: 9 Page: 18 Author:

Russell Ochocki
• Linux in the Real World: Redesigning SCADA at Virginia Power Issue: 9

Page: 23 Author: Vance Petree
• Remote Network Commands Issue: 9 Page: 33 Author: Jens Hartmann

• A Conversation with Olaf Kirch Issue: 10 Page: 13 Author: LJ Staff

• Linux in the Real World: SCADA-Linux Still Hard at Work Issue: 10 Page: 14
Author: Vince Petree

• Linux Conference at Open Systems World FedUNIX'94 Issue: 10 Page: 20
Author: Belinda Frazier

• Using Tcl and Tk From Your C Programs Issue: 10 Page: 26 Author: Matt
Welsh

• Linux in Amsterdam Issue: 10 Page: 6 Author: Michael K. Johnson



• The Humble Beginnings of Linux Issue: 11 Page: 11 Author: Randolph
Bentson

• Introducing Scheme Issue: 11 Page: 23 Author: Robert Sanders
• Introduction to LINCKS Issue: 11 Page: 26 Author: Martin Sjolin
• Review of Scilab Issue: 11 Page: 40 Author: Robert Dalrymple
• Building Shared Libraries Issue: 12 Page: 9 Author: Eric Kasten
• Ethernetting Linux Issue: 12 Page: 12 Author: Terry Dawson
• Linux- It's Not Just For Intel Anymore Issue: 12 Page: 20 Author: Joseph

Brothers
• Leviathan Issue: 12 Page: 28 Author: Paul Sittler
• The Pari Package on Linux Issue: 13 Page: 5 PeterAuthor: Klaus-N/A

Nischke
• Access Information Through World Wide Web: Installing CERN's WWW

Server Issue: 13 Page: 9 Author: Eric Kasten
• Majordomo Issue: 13 Page: 13 Author: Piers Cawley

• Interview with Mark Bolzern Issue: 14 Page: 19 Author: LJ Staff

• Review: xBase Products for Linux Issue: 14 Page: 22 Author: Robert
Broughton

• Introduction to Eiffel Issue: 14 Page: 34 Author: Dan Wilder
• Review: Intelligent Multiport Serial Boards Issue: 14 Page: 46 Author: Greg

Hankins
• The LINCKS GPD Issue: 15 Page: 17 Author: Martin Sjolin
• Setting up X11 Issue: 15 Page: 24 Author: Greg Lehey
• HTML: A Gentle Introduction Issue: 15 Page: 35 Author: Eric Kasten
• xfm 1.3: A File and Applications Manager Issue: 15 Page: 50 Author: Robert

Dalrymple
• Linux Goes To Sea Issue: 16 Page: 19 Author: Randolph Bentson
• Efficient, User-Friendly Seismology Issue: 16 Page: 25 Author: Sid Hellman
• HTML Forms: Interacting with the Net Issue: 16 Page: 34 Author: Eric

Kasten
• Introduction to Lisp-Stat Issue: 16 Page: 44 Author: Narasimhan

Balasubramanian
• Writing A Mouse Sensitive Application Issue: 17 Page: 14 Author:

Alessandro Rubini
• Porting DOS Applications to Linux Issue: 17 Page: 28 Author: Alan Cox
• ncurses: Portable Screen Handling for Linux Issue: 17 Page: 43 Author:

Eric Raymond
• Writing man Pages Using groff Issue: 18 Page: 18 Author: Matt Welsh
• LaTex for the Slightly Timid Issue: 18 Page: 34 Author: Kim Johnson



• Using grep Issue: 18 Page: 42 Author: Eric Goedelbacker
• Flexible Formatting with Linuxdoc-SGML Issue: 18 Page: 51 Author:

Christian Schwarz
• Getting the Most Out Of X Resources Issue: 19 Page: 30 Author: Preston

Brown
• Optimizing the Linux User Interface Issue: 19 Page: 47 Author: Jeff Arnholt
• LesTif and the Hungry ViewKit Issue: 19 Page: 56 Author: Malcolm Murphy

News and Articles

• ICMAKE part 1 Issue: 1 Page: 12 Author: Frank Brokken
• Onyx Issue: 1Page: 14 Author: Micheal Kraehe
• Linux and Hams Issue: 1 Page: 16 Author: Phil Hughes
• The Linux FSSTD Issue: 2 Page: 28 Author: Daniel Quinlan
• ICMAKE part 2 Issue: 2 Page: 34 Author: Frank Brokken
• WINE status Issue: 2 Page: 44 Author: Bob Amstadt
• Introduction to the GNU C Library Issue: 2 Page: 18 Author: Michael K.

Johnson

• Linux Distributions Issue: 2 Page: 22 Author: LJ Staff

• Let's Take Linux Seriously Issue: 3 Page: 7 Author: Phil Hughes
• ICMAKE part 3 Issue: 3 Page: 24 Author: Frank Brokken
• The Open Development of Debian Issue: 3 Page: 29 Author: Ian Murdock
• UniForum 1994 Issue: 3 Page: 18 Author: Phil Hughes
• From The Publisher: Let's Take Linux Seriously Issue: 3 Page: 7 Author: Phil

Hughes
• Linus Torvalds at DECUS '94 Issue: 4 Page: 20 Author: Bob Tadlock
• Unix and Computer Science Issue: 4 Page: 22 Author: Ronda Hauben
• Linux Sound Support Issue: 4 Page: 28 Author: Jeff Tranter
• ICMAKE part 4 Issue: 4 Page: 35 Author: Frank Brokken
• Slackware 2.0 Released Issue: 4 Page: 45 Author: Phil Hughes
• Linux on the Motorola 860x0 Issue: 5 Page: 20 Author: Hamish Macdonald
• Dialog, An Introductory Tutorial Issue: 5 Page: 24 Author: Jeff Tranter
• Writing an Intelligent Serial Driver Issue: 5 Page: 28 Author: Randolph

Bentson
• Using iBCS2 under Linux Issue: 5 Page: 30 Author: Eric Youngdale

• Linux Events: Two Views on Heidelberg Issue: 3 Page: 32 Author: LJ Staff

• Selecting a Linux CD Issue: 6 Page: 20 Author: Phil Hughes
• Fix /etc/gateway Issue: 6 Page: 21 Author: Cor Bosman



• Report From the Front:The Linux Review Group Issue: 6 Page: 23 Author:
Magnus Alvestad

• Linux Journal Demographics Issue: 6 Page: 32 Author: Laurie Tucker

• Kernel Code Freeze Announced Issue: 6 Page: 37 Author: Linus Torvalds
• Harbor Issue: 6 Page: 46 Author: Michael K. Johnson
• Overview of the Debian GNU/Linux System Issue: 6 Page: 59 Author: Ian

Murdock
• Selecting Hardware for a Linux System Issue: 7 Page: 14 Author: Phil

Hughes
• CD-ROMs and Linux Issue: 7 Page: 33 Author: Jeff Tranter

• Linux User Group News Issue: 7 Page: 39 Author: LJ Staff

• Andy Issue: 7Page: 40 Author: Andy Tefft
• The Term Protocol Issue: 8 Page: 39 Author: Liem Bahneman
• Linux Meta-FAQ Version 3.11 Issue: 8 Page: 48 Author: various
• Linux Organizations Issue: 8 Page: 54 Author: Michael K. Johnson

• Linux Development Grant Fund Issue: 9 Page: 42 Author: LJ Staff

• Report on Comdex '94 Issue: 10 Page: 6 Author: Belinda Frazier
• What Your DOS Manual Doesn't Tell You About Linux Issue: 10 Page: 23

Author: Liam Greenwood

• Questions From the Linux Journal Booth at Open Systems World Issue: 11
Page: 20 Author: Kim Johnson

• Linux in the Real World—Data Gathering With Linux Issue: 11 Page: 18
Author: Grant Edwards

• Pentiums & Non-Pentiums Issue: 11 Page: 34 Author: Phil Hughes
• Installing Linux via NFS Issue: 11 Page: 15 Author: Greg Hankins
• Mr Torvalds Goes to Washington Issue: 12 Page: 5 Author: Kurt Reisler

• Linux Tip Issue: 12 Page: 41 Author: LJ Staff

• Users Mounting Floppies Issue: 12 Page: 41 Author: LJ Staff

• Linux For Public Service Issue: 13 Page: 21 Author: Dan Hollis
• Hamming It Up On Linux Issue: 13 Page: 26 Author: Brian Lantz
• Netsurfing With Linux: To Sail The Cyber Sea Issue: 13 Page: 30 Author:

Arthur Bebak
• A New Project or a GNU Project Issue: 13 Page: 44 Author: Mark Bolzern

• Linus Torvalds Receives Award Issue: 13 Page: 60 Author: LJ Staff

• Linux at the UW Computer Fair Issue: 14 Page: 17 Author: LJ Staff

• Caldera and Corsair Issue: 14 Page: 18 Author: LJ Staff

• Linux at Comdex/Fall: A Call for Participation Issue: 14 Page: 24 Author:
Mark Bolzern



• Product Review: SlickEdit Issue: 14 Page: 41 Author: Jeff Bauer
• The Linux File System Standard Issue: 15 Page: 45 Author: Garrett

D'Amore
• The Trade Shows Issue: 16 Page: 14 Author: Randolph Bentson
• Putting Widgets in Their Place Issue: 16 Page: 30 Author: Stephen Uhler
• Prototyping Algorithms in Perl Issue: 16 Page: 39 Author: Jim Shapiro
• Two Eiffel Implementations Issue: 17 Page: 21 Author: Dan Wilder

• Reader Survey Results Issue: 17 Page: 36 Author: LJ Staff

• Indexing with Glimpse Issue: 18 Page: 16 Author: Michael K. Johnson
• Linux on Alpha: A Strategic Choice Issue: 18 Page: 29 Author: Jon

“maddog” Hall
• Linux Serving IKEA Issue: 19 Page: 20 Author: Anders Osting
• The Best Without X Issue: 19 Page: 22 Author: Alessandro Rubini
• How To Build A Mac Issue: 19 Page: 40 Author: Andreas Schiffler
• Linux on Low-End Hardware Issue: 19 Page: 38 Author: Trenton B. Tuggle
• Linux at SCO Forum Issue: 19 Page: 59 Author: Belinda Frazier

Kernel Korner

• Introduction (Device Drivers) Issue: 8 Page: 18 Author: Michael K. Johnson
• Block Device Drivers Issue: 9 Page: 11 Author: Michael K. Johnson
• Block Device Drivers: Interrupts Issue: 10 Page: 9 Author: Michael K.

Johnson
• Block Device Drivers- Optimization Issue: 11 Page: 38 Author: Michael K.

Johnson
• The ELF Object File Format Issue: 12 Page: 14 Author: Eric Youngdale
• The ELF Object File Format by Dissection Issue: 13 Page: 27 Author: Eric

Youngdale
• The Linux Keyboard Driver Issue: 14 Page: 5 Author: Andries Brouwer
• Memory Allocation Issue: 16 Page: 16 Author: Michael K. Johnson
• System Calls Issue: 17 Page: 12 Author: Michael K. Johnson
• Porting Linux to the DEC Alpha: Infrastructure Issue: 18 Page: 22 Author:

Jim Paradis
• Porting Linux To the DEC Alpha Issue: 19 Page: 16 Author: Jim Paradis

Programming Hints

• Programming the VT Interface Issue: 3 Page: 35 Author: Michael K.
Johnson



• Programming the VT Interface part 2 Issue: 4 Page: 31 Author: Michael K.
Johnson

• Strange I/O Issue: 5 Page: 33 Author: Michael K. Johnson
• Introduction to make Issue: 6 Page: 48 Author: Michael K. Johnson

System Administration

• The df command Issue: 1 Page: 35 Author: Phil Hughes
• General System Administration Issue: 2 Page: 26 Author: Mark Komarinski
• Making Your Own Filesystems Issue: 3 Page: 20 Author: Mark Komarinski
• mtools Issue: 5 Page: 17 Author: Mark Komarinski
• Fixing Your Clock Issue: 8 Page: 15 Author: Mark Komarinski
• How to Move /home To A New Hard Drive On Your Linux System Issue: 8

Page: 44 Author: LJ Staff

• Undelete Issue: 9 Page: 14 Author: Mark Komarinski
• How To Log Friends and Influence People Issue: 11 Page: 35 Author: Mark

Komarinski
• Setting Up Services Issue: 12 Page: 18 Author: Mark Komarinski
• Anonymous ftp Issue: 13 Page: 41 Author: Mark Komarinski
• Upgrading the Linux Kernel Issue: 14 Page: 30 Author: Mark Komarinski
• Installing the Xaw3D Libraries Issue: 15 Page: 54 Author: Mark Komarinski
• Using LILO Issue: 19 Page: 52 Author: Æleen Frisch

Novice to Novice

• Linux Installation and X Windows Issue: 12 Page: 26 Author: Dean Oisboid
• DOS Emulation with dosemu Issue: 13 Page: 34 Author: Dean Oisboid
• Games, Sound & Other Agonies Issue: 15 Page: 6 Author: Dean Oisboid
• Interlude & Exploration: Spreadsheets & Text Editors Issue: 16 Page: 6

Author: Dean Oisboid
• Databases Issue: 17 Page: 37 Author: Dean Oisboid
• Serendipity Issue: 18 Page: 26 Author: Dean Oisboid

What's Gnu?

• What's Gnu? Issue: 1 Page: 20 Author: Arnold Robbins
• What's Gnu? Issue: 2 Page: 14 Author: Arnold Robbins
• Bash: The GNU shell Issue: 3 Page: 40 Author: Chet Ramey
• Bash: The GNU Shell part 2 Issue: 4 Page: 41 Author: Chet Ramey
• Texinfo Issue: 6 Page: 51 Author: Arnold Robbins



• groff Issue: 7Page: 19 Author: Arnold Robbins
• RCS: Revision Control System Issue: 10 Page: 36 Author: Arnold Robbins
• Plan 9 Issue: 11 Page: 31 Author: Arnold Robbins
• The GNU Coding Standards Issue: 16 Page: 47 Author: Arnold Robbins

Stop the Presses

• Non-Intel Linux, WWW, Brave New Linux Issue: 3 Page: 6 Author: Michael
K. Johnson

• Linux MIPS, Version 0.9.2 Linux 64k, LSM Maintainer Change Issue: 6 Page:
5 Author: N/A

• Linux Gaining Momentum Issue: 7 Page: 5 Author: Phil Hughes

• Linux Journal at Unix Expo Issue: 8 Page: 5 Author: Phil Hughes

• An Amazing Year—Looking Into the Future Issue: 9 Page: 7 Author: Phil
Hughes

• Documentation? Issue: 10 Page: 5 Author: Phil Hughes

• Time Again For Reader Input Issue: 11 Page: 10 Author: LJ Staff

• Linus Torvalds Releases Linux 2.0 Issue: 13 Page: 22 Author: LJ Staff

• Changes to Linux Journal Issue: 14 Page: 10 Author: Phil Hughes

• Linux at DECUS Issue: 15 Page: 10 Author: Michael K. Johnson
• ELF Tools Released for Linux Issue: 16 Page: 10 Author: Michael K. Johnson
• WYSIWYG Editor, BLADE, Linux at OSW Issue: 17 Page: 10 Author: Phil

Hughes
• Win95 and Linux Issue: 18 Page: 11 Author: Phil Hughes

Cooking With Linux

• Virtual Dramamine Issue: 3 Page: 46 Author: Matt Welsh
• It's Linux Jim, But Not As We Know It! Issue: 4 Page: 39 Author: Matt Welsh
• Thou Shalt Not Use MS-DOS Issue: 5 Page: 35 Author: Matt Welsh
• Your Mileage May Vary Issue: 6 Page: 38 Author: Matt Welsh
• Amsterdam on Fifty Guilders a Day Issue: 12 Page: 11 Author: Matt Welsh

Book Reviews

• Linux Installation and Getting Started Issue: 1 Page: 10 Author: Phil
Hughes

• Newtons Telecom Dictionary Issue: 3 Page: 23 Author: Phil Hughes
• Internet Public Access Guide Issue: 3 Page: 23 Author: Morgan Hall
• Cyberia, Life in the Trenches of Hyperspace Issue: 5 Page: 44 Author:

Putnam Barber



• The Whole Internet User's Guide and Catalog Issue: 5 Page: 44 Author:
Putnam Barber

• Firewall and Internet Security: Repelling the Wily Hacker Issue: 6 Page: 36
Author: Danny Yee

• Making TeX Work Issue: 8 Page: 50 Author: Vince Skahan
• UNIX—An Open Systems Dictionary Issue: 8 Page: 52 Author: Laurie

Tucker
• Linux vom PC zur Workstation Grundlagen, Installation und praktischer

Einsatz Issue: 8 Page: 52 Author: Martin Sckopke
• Linux Anwenderhandbuch Leitfaden fur die Systemverwaltung Issue: 8

Page: 53 Author: Martin Sckopke
• Unix Systems for Modern Architectures Issue: 9 Page: 30 Author:

Randolph Bentson
• Your Internet Consultant Issue: 11 Page: 59 Author: Phil Hughes
• The Tcl and the Tk Toolkit Issue: 11 Page: 60 Author: Phil Hughes
• A Quarter Century of Unix Issue: 12 Page: 45 Author: Danny Yee
• The X Mosaic Handbook for the X Window System Issue: 12 Page: 25

Author: Caleb Epstein
• The Linux Sampler Issue: 13 Page: 58 Author: Harvey Friedman
• Running Linux Issue: 14 Page: 8 Author: Grant Johnson
• X User Tools Issue: 15 Page: 8 Author: Danny Yee
• Sendmail: Theory and Practice Issue: 16 Page: 12 Author: Phil Hughes
• Casting the Net: From ARPANET to Internet and Beyond Issue: 17 Page: 48

Author: Danny Yee
• The Unix Philosophy Issue: 17 Page: 51 Author: Belinda Frazier
• Build a Web Site Issue: 18 Page: 15 Author: Brian Rice
• The HTML Sourcebook Issue: 18 Page: 15 Author: Brian Rice
• HTML for Fun and Profit Issue: 18 Page: 15 Author: Brian Rice
• Teach Yourself Perl in 21 Days Issue: 19 Page: 15 Author: David Flood

Product Reviews

• Motif 1.2.3 Runtime and Development System Issue: 6 Page: 12 Author:
Dale A. Lutz

• Unix Interactive Tools Issue: 6 Page: 22 Author: Clarence Smith
• Crisp Text Editor Issue: 6 Page: 27 Author: Robert Broughton
• Doom Issue: 8Page: 22 Author: Michael K. Johnson
• BRU—Backup and Restore Utility Issue: 11 Page: 43 Author: Jon Freivald
• Xfig Issue: 12Page: 6 Author: Robert Dalrymple
• InfoMagic Issue: 12 Page: 25 Author: Caleb Epstein



• Metro X Issue: 15 Page: 30 Author: Bogdan Urma
• AX Graphical Display Server Issue: 15 Page: 31 Author: Mark Ganter
• Motif for Linux Issue: 15 Page: 48 Bogdan Urma
• Moo-Tiff Development Environment Issue: 17 Page: 55 Author: Bogden

Urma
• IGEL Etherminal 3X Issue: 19 Page: 35 Author: Michael K. Johnson

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux Journal Readers' Choice Awards

LJ Staff

Issue #20, December 1995

A few months ago, we asked Linux Journal readers to rank their favorite Linux-
related software, hardware and books during a two-week Web and e-mail-
based survey. Here are your choices. 

This first year, the Readers' Choice awards have only three broad catagories.
One of the most common requests was for us to expand our catagories
significantly, which we will consider for next year's awards. 

Books

Tied for first place were Running Linux, by Matt Welsh and Lar Kaufman, and 
Sendmail: Theory and Practice, by Frederick M. Avolio and Paul A. Vixie. A close
second was Tcl and the Tk Toolkit, by John Ousterhout.

Running Linux has sold out of several printings, and O'Reilly has announced
that they will be selling it with a companion CDROM package containing Red
Hat Commercial Linux.

Hardware

First place in the hardware catagory was the Cyclades family of multiport serial
boards, and second place was the Comtrol family of multiport serial boards.

Both of these vendors fully support the Linux drivers for their products, and the
Cyclades driver is part of the mainline Linux source tree. In addition, when
Cyclades released their first PCI-based multiport serial board, they prepared
the Linux driver before drivers for any other operating system.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Software

First place goes to Ishmail, a powerful mail-reading application for Linux. Tied
for second were BB Tool, a stock charting application, and BRU, the Backup and
Restore Utility. Many readers wanted to vote for more than one subcatagory of
software; they considered choosing between an application and a tool (for
instance) impossible and insane. (We would like to thank them for doing the
impossible and becoming temporarily insane for us...)

While there were obviously many readers who like Ishmail, we suspect that one
of them posted to an Ishmail mailing list about the survey, since the majority of
the votes for Ishmail came in over a period of only a few hours. Even without
those votes, Ishmail would still have won, as well as we can tell.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Linux System Administration

Æleen Frisch

Issue #20, December 1995

Slightly more tedious and complex than adding a disk drive to other
microcomputer systems. 

The steps required to add an additional disk drive to a microcomputer system
are somewhat more tedious than those needed for larger systems. Most of the
complexity comes from the fact that disks can be shared by distinct operating
systems on microcomputers. 

The terminology related to disk partitions varies somewhat between UNIX and
other microcomputer operating systems. For example, DOS distinguishes
between the primary partition (the principal, bootable DOS partition) and other
extended partitions on the same hard disk; a UNIX disk partition is simply a
separately accessible portion of a disk. DOS allows for a maximum of four
physical partitions per disk. Under DOS, a physical disk partition can be further
subdivided into multiple parts, known as logical drives. The first step in adding
a disk to a microcomputer system is to decide how the drive will be split
between DOS and UNIX (if applicable). The fdisk utility is used to create physical
disk partitions on microcomputer systems (DOS also provides an fdisk utility).
The cfdisk utility, a screen-based version of fdisk, is also available under Linux.
The following considerations apply to the myriad of fdisk versions that you may
encounter:

• The conventional wisdom is to use the native version of fdisk to create
and operate on the disk partitions for each operating system. In other
words, use the DOS version for the DOS partitions, and the UNIX version
for the UNIX partitions. In practice, you can often get away with using a
different version. Things generally work fine, except when they don't.

• Keep records of the partition numbers, starting and ending blocks, total
sizes, partition type, and other data for each disk partition table as it is
displayed by every version of fdisk that you have. An easy way to do this is
to print the partition table from each version. If the table is ever damaged

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


—and this does happen from time to time—you will probably need the
information to recreate it and recover your data. Having the data from all
the versions ensures that you can redefine partitions following the same
alignment patterns and requirements as observed by the various
operating systems when they created the partitions initially.

Making a New Disk Available to Linux

We'll look at the process of attaching a new SCSI disk to a Linux system in
detail. The process would be the same for other disk types (for example, IDE),
although the special files used to access the device would be different (for
example, /dev/hdb).

After attaching the disk to the system, it should be detected when the system is
booted. You can use the dmesg command to display boot messages or check /
etc/boot.log if you're using the sysvinit facility:

scsi0 : at 0x0388 irq 10 options CAN_QUEUE=32 ...
scsi0 : Pro Audio Spectrum-16 SCSI
scsi : 1 host.
Detected scsi disk sda at scsi0, id 2, lun 0
scsi : detected 1 SCSI disk total.

If necessary, create the device special files for the disk (needed only when you
have lots of disks). For example, this command creates the special files used to
access the fifth SCSI disk:

# cd /dev; MAKEDEV sde

Note also that disk ordering happens at boot time, so adding a new SCSI disk
with a lower SCSI ID than an existing disk will cause special files to be
reassigned—and probably break your /etc/fstab setup.

Assuming we have our special files all in order, we will use fdisk or cfdisk (a
screen-oriented version) to divide the disk into partitions (we'll be saving about
a third of the disk for a DOS partition). The following commands will start these
utilities for the first SCSI disk:

# fdisk /dev/sda
# cfdisk /dev/sda

We'll need the following subcommands:

Action Subcommand  

 fdisk cfdisk



cfdisk is more convenient to use as the partition table is displayed
continuously. A cfdisk subcommand always operates on the current partition
(highlighted). Thus, in order to create a new partition, move the highlight to the
line corresponding to Free Space, and then enter an n. cfdisk will prompt for
the partition information:

Primary or logical [pl]: p
Size (in MB): 110

If you'd rather enter the size in a different set of units, use the u subcommand
(cycles among MB, sectors and cylinders).

We use the same procedure to create a second partition, and then activate the
first partition with the b subcommand. Then, we use the t subcommand to
change the partition types of the two partitions. The most commonly needed
type codes are 6 for DOS, 82 for a Linux swap partition, and 83 for a regular
Linux partition.

Here is the final partition table (output has been simplified): Don't put any
hairspaces in between the dashes below, or they will blow up. They don't have
to look separated.

cfdisk 0.8 BETA
              Disk Drive: /dev/sda
Heads: 16  Sectors per Track: 63   Cylinders: 1023
Name      Flags   Part Type   FS Type    Size (MB)
/dev/sda1 Boot    Primary     Linux          110.0
/dev/sda2         Primary     DOS             52.5
                  Pri/Log     Free Space       0.5

If you've changed the partition layout of the disk—in other words, done
anything other than change the types assigned to the various partitions—
reboot the system at this point.

Create new partition n n

Change partition type t t

Make partition active/bootable a b

Write partition table to disk w W

Change size units u u

Display partition table p N/A



Next, use the mkfs command to create a filesystem on the Linux partition. mkfs
has been streamlined in the Linux version and requires little input:

# mkfs -t ext2 /dev/sda1

This command creates an ext2-type filesystem. If you want to customize mkfs's
operation, the following options may be useful:

• -b: Set filesystem block size in bytes (the default is 1024).
• -f: Set filesystem fragment size in bytes (the default is 1024).
• -c: Check the disk partition for bad blocks before making the filesystem.
• -i: Specify bytes/inode value: create one inode for each chunk of this many

bytes. The default value of 4096 usually creates more than you'll ever
need, but probably isn't worth changing.

• -m: Specify the percentage of filesystem space to reserve (accessible only
by root). The default is 5% (half of what is typical on other UNIX systems).
In these days of multigigabyte disks, even this percentage may be worth
rethinking.

Once the filesystem is built, run fsck:

# fsck -f -y /dev/sda1

The -f option is necessary to force fsck to run even though the filesystem is
clean. The new filesystem may now be mounted and entered into /etc/fstab,
which is the subject of the next section.

The Filesystem Configuration File: /etc/fstab

Here are some sample entries from /etc/fstab from a Linux system:

# device   mount  type  options   dump fsck
/dev/hda2  /      ext2  defaults    1    1
/dev/hdb1  /aux   msdos noauto      1    2
/dev/hda1  none   swap  sw          0    0
/dev/sda1  /chem  ext2  defaults    1    1

The general format for an entry is:

special-file loc type opts
dump-freq pass-number

The fields have the following meanings:

• special-file: The name of the special file on which the filesystem
resides. This must be a block device name.

• loc: The directory at which to mount the filesystem. If the partition will
be used for swapping, use none for this field.



• type: The kind of partition the entry refers to. The value for local
filesystems under Linux is ext2. Other common type values are nfs for
volumes mounted remotely via NFS, and swap for swap partitions and
ignore, which tells mount to ignore the entry.

• opts: This field consists of one or more options, separated by commas.
The type field, above, determines which options are allowed for any given
kind of filesystem. For ignore type entries, this field is ignored. For local
filesystems, the options field may include the following keywords,
separated by commas:

• Multiple options are separated by commas, without intervening spaces.
On many systems, the keyword defaults may be placed into this field if no
options are needed.

• If the filesystem type is nfs, many more options are supported (see
Chapter 13).

• dump-freq: A decimal number indicating the frequency with which this
filesystem should be backed up by the dump utility. The dump utility is in
alpha testing and is not available on most Linux systems, so unless you
use dump, you can ignore this field.

• pass-number: A decimal number indicating the order in which fsck
should check the filesystems. A pass-number of 1 indicates that the
filesystem should be checked first, 2 indicates that the filesystem should
be checked second, and so on. The root filesystem must have a pass-
number of 1. All other filesystems should have the same or higher pass
numbers. For optimal performance, two filesystems that are on the same
disk drive should have different pass numbers; however, filesystems on
different drives may have the same pass number, letting fsck check the

rw Read-write filesystem

ro Read-only filesystem

suid The SUID access mode is permitted (default)

nosuid The SUID access mode is not permitted

noauto Don't automatically mount this filesystem

usrquota User quotas may be placed in effect

grpquota Group quotas may be placed in effect



two filesystems in parallel. fsck will usually be fastest if all filesystems
checked on the same pass have roughly the same size. This field should
be 0 for swap devices (0 disables checking by fsck).

Viewing and Modifying the Superblock

The tune2fs command may be used to list and alter fields within the superblock
of an ext2 filesystem. Here is an example of its display-mode output:

# tune2fs -l /dev/hdb1
Filesystem magic number: 0xEF53
Filesystem state:        clean
Errors behavior:         Continue
Inode count:             13104
Block count:             52208
Reserved block count:    2610
Free blocks:             50528
Free inodes:             13093
First block:             1
Block size:              1024
Fragment size:           1024
Blocks per group:        8192
Fragments per group:     8192
Inodes per group:        1872
Last mount time:         Wed Dec 31 19:00:00 1969
Last write time:         Thu Mar  2 04:19:16 1995
Mount count:             6
Maximum mount count:     20
Last checked:            Thu Mar  7 15:27:34 1996
Check interval:          2592000
Next check after:        Fri Apr  5 16:27:34 1996

The final items in the list concern when fsck will check the filesystem, even if it
is clean. The Linux version of fsck for ext2 filesystems will check the filesystem if
either the maximum number of mounts without a check has been exceeded or
the maximum time interval between checks has expired (20 times and 30 days
in the preceding output; the check interval is given in seconds).

tune2fs's -i option may be used to specify the maximum time interval between
checks in days, and the -c option may be used to specify the maximum number
of mounts between checks. For example, the following command disables the
time-between-checks function and sets the maximum number of mounts to 25:

# tune2fs -i 0 -c 25 /dev/hdb1
Setting maximal mount count to 25
Setting interval between check 0 seconds

Another useful option to tune2fs is -m, which allows you to change the
percentage of filesystem space held in reserve dynamically.

Hints for Splitting Linux Across Two Disks

UNIX versions designed for microcomputers tend to assume that such systems
have a single disk large enough to accommodate all of the filesystems that it
will use. If what you actually have is a smaller amount of space on each of two
disks but not enough on either one to hold all of UNIX, there is usually no built-



in way to install the operating system anyway. However, a procedure like the
following will usually be successful:

• Install a minimal operating system on the partition on the first disk.
• Add the partition(s) from the second disk to the system.
• The general strategy is to create symbolic links to the partition on the

second disk to allow the operating system to be split across them. This
can mean copying some directories to the second disk after installation
and then creating links in the original location, as in this example (/d2 is
the mount point for the partition from the second disk:

# cd /d2
# tar -cvf - -C /usr/lib terminfo | tar -xvpf -
# rm -rf /usr/lib/terminfo
# ln -s /d2/terminfo /usr/lib/terminfo

• Alternatively, if you know or can determine the location for an operating
system component before installing it, you can pre-set up the symbolic
link, then install that component, and the files will be written to the right
location to begin with. For example, the following commands will cause
the manual pages to be written to the second disk:

# mkdir /d2/man
# chown bin /d2/man; chgrp bin /d2/man
# chmod 755 /d2/man
# ln -s /d2/man /usr/man

• When selecting components to move, avoid placing anything required to
boot the system on the second disk.

• Continue this process until everything you want is installed.

Reprinted with minor alterations by permission from Essential System
Administration ---Edition 2, copyright (C) 1995, O'Reilly and Associates, Inc. For
orders and information call 800-998-9938 or 707-829-0515.

Æleen Frisch manages a very heterogeneous network of Linux and other UNIX
systems and PCs. After finally finishing the second edition of Essential System
Administration, she has gone back to her true calling in life, pulling the string
for her cats, Daphne and Sarah. She can be reached via e-mail at 
aefrisch@lorentzian.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:aefrisch@lorentzian.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

PracTcl Programming Tips

Stephen Uhler

Issue #20, December 1995

This month, find out how to test the speed of your Tcl programs and zero in on
the slow parts with the time command. 

The other day I wrote a Tcl program, and it was really slow. Even after I got all of
the bugs out, it was still slow, so it was time to optimize its performance. My
first rule of program optimization is to do nothing; just wait for a faster
machine. Unfortunately, in this case, I can't wait that long. 

My second rule of optimization is to avoid spending any effort optimizing code
that doesn't matter, either because it never gets run (don't laugh, it happens
more than you think), or it doesn't take a significant fraction of the total run
time of the program.

As an aid to program optimization, Tcl provides a time command that measures
and reports the time it takes to execute a Tcl script. It's called as:

time script count

where script is the Tcl script to time, and count is the number of times to
run the script, it's run once if no count is given. time reports its result in the
form:

3000 microseconds per iteration

The time is the average elapsed time for each time the script is timed.

Occasionally, it is useful to use the time command as-is to time procedures as
they are run on various inputs. Once you have pin-pointed the “time hog”
procedure in your application, time can be used this way to measure the
performance effects of recoding techniques or new algorithms (or faster
machines).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


However, for any serious program optimization, a more systematic approach is
needed. We can write some procedures that use the time command to enable
us to compute an execution time profile of an entire application.

One way to profile an application would be to re-write every procedure,
surrounding its body with a time command, whose result can be tabulated in
some way. Since Tcl lets us ask about the arguments and body of every
procedure, the procedures can be rewritten automatically by the profiler.

The disadvantage of this approach is that it only works for procedures and not
for the built-in commands. Considering that one of the primary ways of
speeding up a Tcl application is recoding some of the procedures in C and
turning them into built-in commands, it would be nice to be able to profile
commands as well as procedures.

Instead of re-writing procedures, we'll rename them and write a new procedure
with the original name that calls (and times) the renamed version. This way,
profiling can be done on both commands and procedures.

Gathering the Data

The first step is to write the replacement procedure. It will be the same for all
procedures and commands except for its name, and the name of the renamed
original it will call. The easiest way to accomplish this is by writing a procedure
body template and using the format command to substitute in the appropriate
names.

 proc profile_proc {proc} {
    global Template
    rename $proc $proc:OLD
    set body [format $Template $proc]
    proc $proc args $body
 }

The procedure profile_proc takes the name of a Tcl procedure, renames it by
adding the suffix :OLD, then uses the template (in Template) to write a new
procedure that times the calls to the original. Although different commands
and procedures will require differing numbers of arguments, by using args, we
can arrange for them to be passed to the original (:OLD) procedure un-
changed.

The global variable Template contains the format template for the new
procedure body, which substitutes the procedure name in two places, one to
call the original and another to log the results. The 1$ in the format specifier
indicates the first parameter to format should be used both times.

set Template {
    global Profile_fd



    set time [lindex [time {set result \
            [uplevel [list %1$s:OLD] $args]}] 0]
    set level [expr [info level] - 1]
    if {$level > 0} {
        set caller [lindex [info level $level] 0]
        regsub -all {(.*):OLD} $caller {\1} \
        caller
    } else {
        set caller TopLevel
    }
    puts $Profile_fd [list %1$s $time $caller]
    return $result
}

The timing information is written to a file so that it may be analyzed off-line. We
will make sure the variable Profile_fd contains a file handle to which we can
write timing information. First, we run the “original” command with time. By
using uplevel, we can insure the original command will run in the same stack
level it expects, so if it uses any upvar commands they will work properly. Since
nothing in Tcl prevents a procedure name from having special characters in it,
the %s:OLD needs to be passed though the list command. The original
arguments to the procedure, that were gathered up into the single list args, are
expanded into their original form by uplevel. The lindex 0 extracts just the time
portion of the time command output and saves it in the variable time.

To properly account for the time spent in each procedure, not only is the timed
procedure's name required, but its caller's name is needed as well, as will be
apparent when it comes time to account for all of the time.

The info level command is used to determine the caller's name (or TopLevel, if
called from the top level). The regsub gets rid of the :OLD to make the book-
keeping easier.

Finally, the procedure name, time spent, and caller name are all written to the
logging file, and the result returned by the renamed procedure, result, is
returned to the caller.

The procedure profile_start is used to turn on profiling.

proc profile_start {{pattern *}} {
    global Profile_fd
    set Profile_fd [open /tmp/prof.out.[pid] w]
    foreach i [info procs $pattern] {
        profile_proc $i
    }
}

First, it opens the file that will receive the timing information, and calls 
profile_proc for the procedures we wish to profile. If commands are to be
profiled as well as procedures, the info procs could be changed to info
commands. At this point, the application can be run as usual, except that for
each profiled command or procedure, a line of timing information is written
into the file. 



To turn off the profiling, profile_stop is called.

proc profile_stop {} {
    global Profile_fd
    close $Profile_fd
    foreach proc [info procs *:OLD] {
        regsub {(.*):OLD} $proc {\1} restore
        rename $restore {}
        rename $proc $restore
    }
    profile_summarize /tmp/prof.out.[pid]
}

The procedure profile_stop closes the log file, removes the special profiling
procedures, restores the names of the original procedures, and calls 
profile_summarize, which prints a summary of the profile data. Fancier versions
of profile_start and profile_stop could check to make sure a procedure isn't
profiled twice, or that time isn't wasted profiling the profiling routines. 

Analyzing the results

Analyzing the profile data is a bit tricky. The time attributed to a particular
procedure consists of not only time spent in that procedure, but the time spent
in all of its children (“called” procedures) plus the time taken by the profiling
code that times the child procedures.

We can approximate the time spent in the profiling code by running a
procedure with—then without—the profiling code and computing the
difference. The procedure profile_calibrate does just that.

proc profile_calibrate {}
    global Profile_fd
    proc profile_dummy {args} {return $args}
    set Profile_fd [open /tmp/[pid] w]
    time profile_dummy 10
    set before [lindex [time profile_dummy 10] 0]
    profile_proc profile_dummy<\n>
    set after [lindex [time profile_dummy 10] 0]
    close $Profile_fd
    rename profile_dummy {}
    rename profile_dummy:OLD {}
    return [expr ($after - $before)]
}

A dummy procedure profile_dummy is created and timed. Then profile_proc is
called to add the profiling code, and profile_dummy is timed again. The result is
an approximation of the timing overhead.

proc Incr {name {value 1}} {
    upvar $name var
    if {[info exists var]}  {
        set var [expr $var + $value]
    } else {
        set var $value
    }
}



The profile_summarize procedure uses a souped-up version of the Tcl incr
command (called Incr that permits incring a variable before it is set by
automatically initializing it to zero before incrementing it.

proc profile_summarize {file} {
    puts [format "%35s calls   ms   ms/call %%" \
          name]
    set fd [open $file r]
    set total 0
    set overhead [profile_calibrate]
    # read in the data, and accumulate the values
    while {[gets $fd line] > 0} {
        set name [lindex $line 0]
        set time [lindex $line 1]
        set parent [lindex $line 2]
        Incr count($name)
        Incr sum($name) $time
        if {$parent != "TopLevel"} {
            Incr sum($parent) \
                 "- ($time + $overhead)"
        } else {
            Incr total $time
        }
    }
    close $fd
    # sort and print the results
    foreach name [lsort [array names count]] {
        if {$count($name) == 0} continue
        set ms [expr $sum($name)/1000]
        puts [format "%35s %4d %7d %6d %4.1f%%" \
            $name $count($name)  $ms \
            [expr $ms / $count($name)] \
            [expr $sum($name) * 100.0 / $total]]
    }
}

After a bit of initialization, Profile_summarize works in two stages, reading and
tabulating the timing information, then sorting and printing the results.

Each line of timing information is read into three variables: the procedure 
name, the elapsed time in µs, and the parent, or calling, procedure name. Two
arrays, count and sum, both indexed by procedure name, are used to keep
track of the number of times each procedure is called and the accumulated
time for each procedure. Next, the time attributed to each procedure is
subtracted from the time credited to its parent, along with the timing overhead.
Only procedures that are called from the top level have their times included in
the total time counter. Otherwise, the time would be counted twice, once for
the procedure and again for its caller.

Once all of the data is tabulated, it is sorted by procedure name. The results are
printed in the form of procedure name, number of times the procedure was
called, the total elapsed time spent in the procedure, and the percentage of the
total program execution time spent in the procedure. The time values are
divided by 1000 to convert them from µs into ms. Note that after about 35
minutes, the number of µs overflows a 32 bit integer, so profiling runs
shouldn't be much longer than a half hour.



Listing 1 at the bottom of this article shows a subset of the results of a profiling
run for an HTML library package. For this test case, it's clear that HMrender

accounts for a proportionally large share of the total running time of the
program. Even if it could be recoded to run infinitely fast, the overall application
would be sped up by, at most, 27%. The negative time attributed to HMtag_a is
probably due to the variability of the profiling overhead calculation.

The data in the logging file looks like:

...
HMrender 152083 HMparse_html
HMmap_esc 553 HMrender
HMzap_white 629 HMrender
HMx_font 3056 HMcurrent_tags
HMset_font 2022 HMcurrent_tags
HMcurrent_tags 14424 HMrender
...

Conclusions

Even though there can be considerable variability in the elapsed times of
procedures, depending upon the current load on the processor, these simple
profiling routines can quickly point out those parts of an application that are
consuming most of the running time and would be good candidates for
optimization.

Stephen Uhler is a researcher at Sun Microsystems
Laboratories, where he works with John Ousterhout
improving Tcl and Tk. Stephen is the author of the
MGR window system and of PhoneStation, a TCL-
based personal telephony environment. He may be
reached via e-mail at Stephen.Uhler@Eng.Sun.COM.

Listing 1: Sample Run

% source sample.tcl
Starting sample HTML viewer...
% source ~/column/profile/test
% profile_start
  [Run the application for a bit]
% profile_stop

HMextract_param

name calls ms ms/call %

HMcurrent_tags 465 1478 3 3.2%

HMdo_map 12 3 0 0.0%

mailto:Stephen.Uhler@Eng.Sun.COM


Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

186 773 4 1.7%  

HMgot_image 12 1199 99 2.6%

HMlink_setup 25 59 2 0.1%

HMmap_esc 467 307 0 0.7%

HMparse_html 3 2970 990 6.4%

HMrender 453 12544 27 27.0%

HMreset_win 3 220 73 0.5%

HMset_font 465 6292 13 13.5%

HMset_image 12 1401 116 3.0%

HMset_state 3 5 1 0.0%

HMstack 306 295 0 0.6%

HMtag_/a 33 124 3 0.3%

HMtag_a 33 -13 -1 -0.0%

  ...   

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Caldera Network Desktop v 1.0

Roger Scrafford

Issue #20, December 1995

The Caldera Network Desktop fulfills its promises and hints at a plug-and-play
system for the masses. 

It's slick, It's attractive! It installs on your i486 computer with a minimum of fuss.
It does everything it says it will do, and—it's only in pre-release! (Version 1.0,
Preview 1 is the version available at the time of this writing. [Preview 2 is now
shipping from Caldera, and will be reviewed in a later issue—ED]) 

OK—back to reality. Though it looks familiar, there is nothing quite like Caldera
Network Desktop (CND). It's something new to the Linux community. It includes
a number of more-or-less independent packages, but here's the kick: some of
them are commercial. That is, they are proprietary—you cannot redistribute
them as you can with the usual Linux software. One to a customer, unless you
get multiple-user licensing.

The manual puts it this way:

Caldera has included a Desktop metaphor, a NetWare client, a font server, and
other commercial software that runs on top of the Linux operating system.
Because Caldera has licensed these commercial components from other
companies, they cannot be freely distributed, but are licensed on a per-copy
basis.... You must have a license for each computer which runs these programs.

Well, that's pretty clear. But just to make sure you are informed, the manual
goes to some lengths to include the GNU General Public License, the UC
Berkeley copyright, and license terms for pthreads (technology used by the
NetWare Client). This may be Linux but it isn't (entirely) free. It's a combination
of freeware and proprietary software.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


The Package

Version 1.0 of the Caldera Network Desktop Preview arrived at my doorstep via
UPS from Banta ISG, in Provo Utah. The Caldera box told me I held “The
Complete Client/Server Internet Solution;” what you find inside is an excellent
124-page Getting Started guide and one CD, which includes:

• Linux 1.2.8 from Red Hat
• an attractive X-window GUI
• 15 fonts in TrueType, Type 1 and SPEEDO formats
• a WEB browser and server
• a NetWare client (for NetWare 3.x and 4.x servers)
• servers for mail and FTP

I noted along the way that CND is English-only (except for the usual Linux
internationality).

The Getting Started book was well-organized, and contained everything I
needed to know to select a kernel and complete a Caldera Network Desktop
installation.

So which is it? Is CND to be one of those software packages you install, but
don't tinker with? It's advertised that way. Or is it a package in the Linux
tradition—install, but grab your screwdrivers and immediately start modifying?
Let's see.

Red Hat

CND is built on top of the Red Hat Commercial Linux distribution. Preview 1
shipped with the 1.2.8 Linux kernel. It was compiled with IPX support and 
CONFIG_MODVERSIONS enabled, and allows you to disable verbose boot
messages.

The standard C and X11 tools and libraries are included. Preview 1 shipped with
version libc version 4.5.26 and gcc version 2.5.8. libc version 4.6.27 is also
included on the CD.

The documentation discusses some of the differences between the Red Hat
Linux file system structure and the Linux File System Standard (FSSTND). And,
as with other Linux distributions, your starting kernel has a bunch of stuff you
don't need for your particular machine; compiling a new kernel after Caldera
installation is, as always, a Good Thing. [Linux Journal covered this in issue 7,
November 1994, and it hasn't changed very much since. Just be sure to say
“yes” when you are asked about CONFIG_MODVERSIONS—Ed]



On occasion during my trials of CND, I found myself eating Flaming Death at the
hands of Caldera support folks, and I was not alone. Slackware users, it seems,
should have known better than to use that shady distribution. No matter, I say;
if I came from a non-Red Hat environment, CND's purported ease of use should
have smoothed the transition. [Preview 2 gives some of this capability—Ed]
Curiously, Caldera's Web page (http://www.caldera.com/) hints that it is
possible to unbundle the Network Desktop from the Red Hat distribution, and a
few information files on the Caldera site actually give you tips on how to do it—
on top of Slackware.

Networking

CND recognizes the following:

• Novell's IPX
• Novell's NetWare 3.x, 4.x (NDS) file server access (no printers yet).
• TCP/IP/NFS, etc.
• Samba 1.9.00 (an SMB server)

I did not test the Samba server, but can praise the absolutely transparent
Novell and TCP/IP services. Applications and X windows are one thing, but it's
this sort of functionality that will make Linux a contender at my own workplace.

X windows

The desktop environment, called Looking Glass, is based on Visix's Looking
Glass Professional. It runs as an application on top of X11 and is used in
conjunction with an unmodified version of the fvwm window manager. From
the CND FAQ:

There is a general purpose file typing facility for the desktop metaphor: actions
can be defined for a given file type. And drop actions can be defined: dropping
an HTML file on the browser will launch the browser on that file.

A graphics card supporting at least 256 colors is required. Graphics cards which
are supported by XFree86 are also supported on CND. A smooth program
called Xconfigurator is also provided, which creates an XFree86 configuration
file for many popular video cards.

Web Browser and Server

The Web browser provided is Arena. It is serviceable, but while it was being
ported to Linux it acquired some color allocation problems. While it claims
HTML 3 compliance, it doesn't support forms or e-mail.

http://www.caldera.com


The Web server installs and works invisibly. I found no problems with it, but did
not explore scripting capabilities, or its performance under stress.

Technical Support

For the time being, Caldera support “is limited (mainly via e-mail and our WWW
and FTP servers on the Internet). No individual support is provided.” The
Caldera page at www.caldera.com included pointers to a wealth of information,
including Linux in general, Red Hat in particular, and, of course, CND FAQs and
other technical information.

Installation

To make all this work you need to install it on an i386 or i486 computer with
one 3-1/2" floppy, at least 80MB of hard drive (although the excellent “Express”
install uses 140MB, and a complete install seems to be at least twice that), 8MB
of RAM (a more realistic 16 MB if you plan to use X-windows), a CD drive which
the supplied Linux boot kernels will recognize, and an appropriate net
connection. With that and three blank floppies ready for the necessary boot,
root and recover disks, you're ready to install—or are you?

The years have taught me that a single software installation on a single
hardware combination can give a ludicrous impression of the product.
Consequently, I have taken the trouble to install Caldera on hardware including:

• Mitsumi and Matsushita CD (with Soundblaster)
• 100MB, 130MB, 220MB and 820MB hard disk
• Western Digital and Tseng VLB

If this seems a waste of time, trust me; each element plays a part in setting up a
user's reaction—“This is a hunk of junk”, “this is great”, or “this is really strange.”

I have performed these Caldera installations in two different environments. The
first is my place of work, where I have an Ethernet connection to our WAN and
from there, through a firewall, to the Internet. The second is at home, where
my connection to the outside world is via the phone company and a local
Internet provider.

Something you must not ignore: Believe the documentation when it tells you
how much disk space is required. The “express” install calls for not less than
140MB; anything less leaves you with an incomplete, totally unbootable
installation. Start over, with plenty of disk space—I'd say nothing less than
220MB (cheap these days). Because part of the point of Caldera is that nifty
“Looking Glass” desktop, that means lots of space is needed. You'll want space
for a swap partition, X itself, all the Caldera-specific paraphernalia, net stuff,

http://www.caldera.com


and so on. And you'll want to build kernels every now and then, so you'll need
gcc, the libraries, and so on. For all this, remember to keep your video specs
handy, and to have fun. The manual has a handy table which allows you to
calculate the disk space required, or make decisions at to what programs you
can afford to skip. It's invaluable.

After your initial installation, software may be installed or removed by means of
either the Red Hat Program Package (RPP) command-line tools, or the Linux
Installation Manager (LIM) graphic interface to RPP.

Quirks

Some of the quirks are a result of Linux itself. During installation, for instance,
after ten minutes of disk activity, the screen goes blank! Of course—it's only the
screen blanker, what could be more logical? But if this is your first shot at a
Linux installation, you might be tempted to do something nasty, like reboot.
(Hint: press the shift key; anything else will be interpreted as an “OK” when it
gets around to checking for keyboard input, and you might not want that next
“OK”.)

Although the CND installation creates standard users, it seems to forget their
passwords; it creates standard groups using the User Private Group scheme.

The bootroot program (located in the CD's <\\>dos directory), which is
supposed to lead you through the creation of the startup floppies, proved to be
a memory hog, refusing to write anything to the disks on some of my test
machines. I found that once I selected the appropriate “boot” and “root” files,
rawrite was the best means of creating the necessary disks on those
computers.

My workplace computer has a Matsushita CD player connected to the
computer through a Media Magic sound card (I used “other SCSI” during kernel
selection). Both work well, but this CD player has a motor-driven CD tray;
during installation, the kernel causes the tray to go in and out like a cuckoo—
some six times during an install. Don't blame either Caldera or Red Hat, as I
was tempted to do; this seems to be a Linux Fact of Life.

Politics

Caldera asserts that despite recent improvements in commercial distributions,
Linux still lacks acceptance as an operating environment in the commercial
world (although some recent Linux Journal articles have shown matters to be
gradually changing). Some of the reasons given: Linux is often perceived as
having been developed by unskilled students, and installation and
configuration are challenging for the uninitiated. Further, they point out, Linux



offers no accountability: it is all but unsupported by mainstream applications,
and it can't provide a complete solution to users' needs—networking, gui, and
so on.

I leave it up to you to decide if any of these are straw men. In any case, the
entrepreneurs at Caldera label these “barriers to growth.” And in order to
remove those barriers, they have brought us the Caldera Network Desktop.
They will “add value to Linux by creating and providing a platform for
commercial products that can appeal to major users and spread the use of
Linux to new areas that traditionally would not have considered using it.”

The future, Mr. Gittes

What lies ahead for this package? Again, from the CD's preview document:

• a more mature WWW/HTML browser
• sophisticated, commercial-grade tape backup system
• a new graphical interface to many utilities and programs
• commercial personal productivity applications
• better Internet access applications

Although it isn't yet possible to upgrade from one release to another, Caldera
says that “such tools are planned for the final 1.0 release.” [Those tools are in
Preview 2, which has just been released—Ed] Something Caldera calls the
InfoTrack database support system will become part of the overall technical
support. OpenDoc support is in the offing. And ELF work is under way. [Again,
Preview 2 is based on ELF—Ed]

How about Linux in general? A number of commercial packages are said to run
on Linux, including Word Perfect and Oracle 7. Indeed, Caldera includes the
SCO Word Perfect demo, and one of Caldera's future offerings includes Word
Perfect itself. Perhaps Linux is being moved in this direction, with or without
Caldera.

Conclusion

Caldera says it wants to “shield end-users from the ordered chaos that creates
and grows Linux, so they can use it as their operating system of choice.” Well,
I've grown jaded over the years—cynical, I suppose (must be that stint as a
Windows 95 beta tester). When so much of a software package actually works, I
am surprised; and this first release of Caldera's Network Desktop has been, to
my mind, a remarkable success.



My suspicion is that the people who buy Caldera will be expecting a software
package they can simply install and run. And, if you take a few precautions
(have enough disk space; know your video numbers; and—yes—RTFM), that's
exactly what happens.

Some take the commercialization of the Net to signal the End of Things as We
Know Them. Will products like Caldera mean the end of Linux as we know it? I
think not—the philosophies are not mutually exclusive. True, Caldera “uses”
Linux, which is GNU freeware, to make money. Still, I think Caldera will prove to
be good for Linux. The solidity of Linux makes a product like Caldera possible;
and the success of Caldera will make Linux accessible to people who don't want
to tinker—who just want to learn, or maybe even do some work.

Meanwhile, in true Linux tradition, “programmers the world over” are doing a
fine job of bashing this package—breaking it, fixing it, feeding the fixes back to
the folks at Caldera. The “First Customer Ship” will be a better, more solid
product because of this test cycle.

I like the product. It can't pretend to be plug-and-play, but it installs easily, runs
well, looks great, and—unless you try to stretch it too far—keeps on running.
Caldera wouldn't exist without Linux; Linux could continue to exist without
Caldera, but this certainly ups the ante.

Roger Scrafford wrestles with Linux, Novell, and Win95 at his day job in Seattle.
You can reach him via e-mail at rscraff@aa.net.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:rscraff@aa.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

The Future Does Not Compute: Transcending the Machines

in Our Midst

Danny Yee

Issue #20, December 1995

I got about two thirds of the way through The Future Does Not Compute before
giving up on it. 

• Author: Stephen L. Talbott
• Publisher: O'Reilly & Associates
• Pages: 481
• ISBN: ISBN 1-56592-085-6
• Reviewer: Danny Yee

At heart The Future Does Not Compute is an attack on the excesses of
technological optimism, particularly those associated with computers. Talbott is
worried about the identification of technology with the ends it is supposed to
help us achieve (of communication systems with community, for example) and
with what our growing reliance on technology indicates about ourselves: he
sees computers as bringing out the worst in people and as a kind of reflection
of a wider malaise. Part one is a broad survey of the relationship between
computers and human communities (which wanders as far afield as
globalization and business ethics); part two considers the effects of computers
in education; part three is about the effects of computers on writing and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


language and on the elevation of “information” to an end in itself; and the final
part is about the “evolution of consciousness”. 

I got about two thirds of the way through The Future Does Not Compute before
giving up on it. It wasn't its anti-technological stance which turned me off, but
rather the way Talbott went about presenting his ideas. All too often he lapses
into complete mysticism, with such outbreaks as

The solitary bird, gripped by an unknowing intensity as
it ploughs through the trackless ether, hears, on the
dull edges of its consciousness, a call of destiny sung
by hidden choirs.

(which is defended by a counter-attack on a ridiculous straw-man
reductionism). Even where he avoids outright obscurantism, Talbott lacks any
kind of respect for philosophical niceties. He keeps on attributing intentionality
to machines, for example, in such fashion as

the computer ups the ante in a game already
extremely perilous. It relentlessly, single-mindedly,
apes us even in those habits..., for it is endowed in
some sense with a mind of its own.

and talks about them “acting in their own right”, but at the same time refuses to
allow that there is any sense in which they can approach human beings. For all
he goes on about the “mechanical” being present in our “inner selves”, Talbott's
rhetoric relies heavily on a rigid and fundamental dichotomy between the
natural and the artificial, between man and machine. He makes no attempt at
all to justify this assumption: even the references to Searle and Penrose I kept
expecting never turned up.

Talbott has an eye for an effective phrase and an impressive vocabulary
(sometimes he verges on poetry), but this is taken to extremes: he is always
prepared to sacrifice clarity and content on the altar of rhetoric and effect.
Terms like “human nature” and “consciousness” and phrases such as “our trust
as stewards of the Earth” and “sleepwalking subservience to technology” are
used without any explanation in critical contexts. Here are some longer
examples:

We must tame technology by rising above it and
reclaiming what is not mechanical in ourselves.

Where, as a child, I differentiated myself from the animal, now I must learn to
differentiate myself from the machine—and this differentiation lies in the
deepening of consciousness. It is therefore not only a matter of pointing to
established human nature; it is also a matter of realizing human nature in its



movement toward the future. Related problems are that Talbott presents his
ideas in a rambling and disconnected fashion, in short sections within short
chapters, and that he has a tendency to say the same thing over and over again
in different ways.

The Future Does Not Compute also lacks any kind of sociological or
psychological depth. The discussion of globalization, for example, doesn't
engage at all with historical or economic perspectives on the subject, and
analysis of at least one concrete example (of a network group which claims
“community” status) might have given some basis to his analysis of the
relationship between technology and community; as it is, all he can offer on
these subjects are empty generalizations.

The most distressing thing about The Future Does Not Compute is that I
actually agree with quite a lot of what Talbott has to say, both on general
subjects like education and the evils of assuming there are technological
solutions to all human problems and on more specific ones such as profit-
seeking business ethics and naively optimistic claims by artificial intelligence
researchers. I fear, however, that many people will use his book as another
excuse to reject all discussion of some important questions as obscurantist
nonsense. In the end I abandoned The Future Does Not Compute because I
wasn't learning anything from it: it is emotionally stirring but intellectually
vacuous.

Disclaimer: I requested and received a review copy of 
The Future Does Not Compute from O'Reilly &
Associates, but I have no stake, financial or otherwise,
in its success.

All book reviews by Danny Yee are available via anonymous FTP
ftp.anatomy.su.oz.au in /danny/book-reviews (index INDEX) or URL 
www.anatomy.su.oz.au/danny/book-reviews/index.html Copyright © Danny

Yee 1995. He can be reached via e-mail at danny@cs.su.oz.au. Comments and
criticism welcome.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.anatomy.su.oz.au/danny/book-reviews/index.html
mailto:danny@cs.su.oz.au
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Letters to the Editor

Various

Issue #20, December 1995

Readers sound off. 

Speedy Delivery

I'd like to congratulate Linux Journal. I bought all the back copies I could get and
found something of real value in each one. What I particularly appreciate, aside
from the topical coverage of the content, is the excellent distribution you use:
US mail. I'm amazed. My October issue arrived in my Auckland NZ post box on
22 September! This compares very favourably with other US magazines which
typically take over three months.

Keep it up guys, I like it!

—John Hardcastle johnh@helec.co.nz

We use ISAL: International Surface Air Lift. This means that all the magazines
for non-US destinations are sent in a single package overseas, and from there
are distributed by national surface mail. We have found this to be highly
effective—in fact, some international subscribers receive their issues of Linux
Journal before some US subscribers.--Editor

Alternate Paper

Just read your column about the idea of printing LJ on recycled paper and use
other environmentally responsible solutions. I just wanted to tell you that I fully
support this—even if it would cost me $10 more per year.

—Christian Perrier bubulle@bubhome.frmug.fr.net

Yesterday I learned about the increase in LJ due to the cost of paper for
printing. David Niemi and I discussed alternative papers that could be used. I

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:johnh@helec.co.nz
mailto:bubulle@bubhome.frmug.fr.net


suggested that hemp paper might be cheaper. David thought that you would
be open to using hemp. So I contacted the Hemp Industries Association
(thehia@aol.com) about companies that sold hemp paper. There is also a
person to contact about hemp paper. Maybe it is cut costs and be
environmentally sound. If you want I can contact the companies and get
information about hemp paper for magazine publishing. I would probably need
info about the size, color runs, pages, etc to pass on though.

Hopefully hemp may be a way to make LJ more cutting edge!

—Gregory J. Pryzby gjp@sddi.com

I am very encouraged to see you considering tree-free & acid-free alternatives
for LJ. I would definately be willing to pay extra money for a more
environmentally sound magazine. The pleasure I already derive from reading 
Linux Journal could reach nirvana like states if I knew everything I was reading
was printed on ecologically sound hemp paper.

I've taken the liberty to pass on your e-mail address and information about the
paper alternative discussions to Paul Stanford, founder of Tree-Free Eco Paper,
based in Portland, Oregon. I hope that you are able to come up with a solution
that makes both environmental and ecomonic sense. Paul can be reached at 
treefreeeco@igc.apc.org.

—Robert Lunday robert@skunk.hemp.net

P.S. A colleague of mine wanted me to tell you that she would buy your
magazine simply because it was printed on hemp paper.

While I approve in principle of using hemp/straw paper for publishing the Linux
Journal, the cost of the publication is a factor for some of us. I'm living on a
graduate school stipend, and while an extra $5 here or $5 there probably won't
break me, every little bit helps. Perhaps LJ should consider student/educator
rates that would be closer to the present subscription price should the
magazine be published in the future on straw/hemp paper and general
subscription prices be forced to rise to cover costs.

Sincerely,Kenneth E. Harker kharker@cs.utexas.edu

First of all congratulations to LJ. I am a subscriber since the early days. I also
gathered all LJ. (I think that the nature of human beeing to gather). In my case, I
wouldn't mind to pay $5/year more if I know that I spend the money for the
environment.

mailto:thehia@aol.com
mailto:gjp@sddi.com
mailto:treefreeeco@igc.apc.org
mailto:robert@skunk.hemp.net
mailto:kharker@cs.utexas.edu


Thank you for doing LJ.

Best regards,Rene von Arx rene.von-arx@alcatel.ch

In your editorial dialogue with Charles Stickelman, you asked what subscribers
would think about increased cost of LJ if you switched to hemp/straw based
paper (if they became available). I would like to say that I would be willing to
pay more for such a product, and would probably be willing to go up another
$15.00 per year. If we want to become environmentally responsible, we need to
make our demands known to the suppliers of products who have alternatives
available. If we are not willing to pay for environmentally friendly products, we
aren't in much position to gripe about other people.

—James A. Robinson jimr@simons-rock.edu

In Issue 18, you ask the question about who among us would be willing to
spend more on the magazine in order to get low-chemical biodegradable
papers and inks.

While I am far from an “environmentalist”, I see no point in putting chemicals
into the environment when there are perfectly acceptable natural alternatives
(e.g. Soy Ink and low-acid paper).

In the same vein, I am no fan of drug use (even marijuana), but given the other
uses for hemp (rope, paper, etc), its high quality in these applications, and its
possible abundance, I find it deplorable that we have such draconian laws and
enforcement to “control” it.

I guess you only asked about higher subscription rates for “environmentally-
friendly” magazines... I would be willing to pay $3-5/yr more for the time being.
I suspect that as more publications make use of these components they will
become cheaper and we will not have to pay higher prices for long.

—Michael George 71540.164@compuserve.com

I'm not against the use of more environmentally friendly printing
methodologies. I am however, concerned about any degredation in the current
good quality of LJ paper and printing.

I've found that some of the newer environmentally friendly journals are easily
smudged, making them a poor choice for use as long term reference material.

mailto:rene.von-arx@alcatel.ch
mailto:jimr@simons-rock.edu
mailto:71540.164@compuserve.com


So for me, it's not an acceptable tradeoff if quality and durability is lessened in
the change. I propose that if this is the case, we hold off on any modifications
until a solution is found that provides a gain on both these issues.

Keep up the outstanding work.

—Best regards,James Cassidy jcassidy@proton.genesoft.com

At current alternative paper prices we need thousands of subscribers willing to
pay a premium price. However, we will keep an eye on price and availability of
these products.--Editor

Not Paper

I have a great idea for saving money on paper costs. I would like to see an
electronic version of the Linux Journal. It would save paper, ink, printing costs,
and lots of trees. The only thing to figure out is how to distribute it. You could
encrypt it with the subscriber's public key, or something like that. I am sure that
something could be worked out.

I have been surprised that publishers have not moved into the electronic
market yet. The potential for selling information is tremendous.

The primary reason that I am interested is because I am blind. When I get my
journals, I have to find someone with the time to read me the articles I am
interested in. Since almost no one has time, it usually involves paying someone
by the hour to do this. $5.00 per hour can get steep.

I would be willing to work with anyone who be interested in doing this. I have a
lot of ideas on security, making sure the magazine gets to the intended
subscriber, and other issues related to electronic publishing.

I am willing to donate my time as I hope that as more things are made usable
by me, it will increase my money making potential. I will be able to generate
more income and spend less to keep up with the “printed” media.

I hope someone takes a serious look at this note and that it does not go to the
great black bit bucket.

Thanks in advance for your time. I look forward to hopefully working with some
one on this.

—Kelly Prescott kellypre@linkup.com

Right now, we are working on distributing it via our WWW site.

mailto:jcassidy@proton.genesoft.com
mailto:kellypre@linkup.com


We are in the process of writing a markup language for Linux Journal that is
similar to HTML and will allow us to do many different kinds of distribution,
including paper, WWW, and potentially other kinds of electronic distribution.
You are not the only blind user to have contacted us, and we would like to be
able to meet your needs better.

Controlling distribution is not a big issue. Most profits come from advertising
revenue, even though we have some of the lowest ad rates in the industry. The
more subscribers we have, the more advertisers are interested in buying
advertisement.--Editor

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Just Browsing

Phil Hughes

Issue #20, December 1995

Hundreds of Web servers (including our own) and Internet Service Providers
(including the one we use) are based on Linux systems. 

As we all know, Linux is what it is today because of the Internet. Without the
international communications made possible by the Internet, such a
development effort would not have been possible. 

In addition, Linux is returning much to the Internet. Hundreds of Web servers
(including our own) and Internet Service Providers (including the one we use)
are based on Linux systems. To their credit, many commercial vendors have
jumped on the Linux bandwagon. Some just sell hardware pieces, some sell
complete Linux systems and some sell software for Linux. Looking at the ads in
this magazine will give you a pretty good feel for which companies have
decided to jump on the Linux bandwagon.

SSC has seen the connection between Linux and the World Wide Web and is
starting a new magazine, WEBsmith. If you are an LJ subscriber, you will see the
premier issue of WEBsmith bound into your January, 1996 issue of LJ. While
there is a lot more to the Web than Linux, we want to promote the Linux/
Internet connection.

Now, for the bad news. As I am writing this, the new version of Netscape, the
most popular Web browser, was just released. Although a Linux version of
Netscape exists, it is not supported. Also, while Netscape has secure server
software available for other platforms, it is not available for Linux.

I don't know how you feel about this but, to me, it makes me think we are being
treated as second class citizens. It's not that Netscape doesn't work on Linux.
It's just that apparently Linux and the Linux community is not being taken
seriously.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


We are a community of activists. We have made Linux go from nothing to the
operating system of choice for hundreds of thousands of people around the
world. And we have helped Linux make inroads into the commercial world. I
think it is time we do a little activism with regard to Linux and Web browsers.

We don't have to start from scratch. Arena, available on many Linux
distributions and archives, is a work-in-progress browser for HTML 3.0. While
not complete, Arena offers some very nice features. My favorite is that it
actually verifies that your HTML is correct. The first time I ran Arena on our Web
site I found that about 90% of our pages produced the bad HTML error
message. It's not that I am proud of this, it's just that I see having a tool that
checks your work as being valuable.

Arena is from the World Wide Web Consortium (W3C), an industry consortium
run by the Laboratory of Computer Science at Massachusetts Institute of
Technology. In Europe, it is a collaboration of MIT with CERN, the originators of
the Web, and with INRIA, in France. Arena is built using the library of common
code called the W3C Reference Library. It is currently available as a binary for
most major Unix platforms (where, in this case, major includes Linux).

To quote the W3C on their plans for Arena

Arena will continue to be a testbed browser for HTML3
and style sheets. We do not have the resources nor
the intent to make Arena a full-featured web browser,
but welcome initiatives to help add functionality.

I haven't talked to anyone at W3C but, if there is interest in the Linux
community, I am willing to spearhead an initiative within the Linux community
aimed at developing further functions for Arena.

One such initiative comes from David Bonn, of Mazama Software Labs, who
suggested writing what you might call browser tools that would make it
possible to easily embed an HTML browser in your application. This has the
advantage that you could build systems where browsing HTML was just a part.
For example, you might want to build a system for your office where it would
be possible for clerical people to access procedures that were in HTML format.
You could include this in the application that they commonly ran instead of
having them learn about a new program in order to read these procedures.

I am sure there are lots of other ways to go. At this point I am just sending the
idea of a new development effort up the flagpole to see if Linux community
members are interested. Let us know what you think. Send us mail or, better
yet, e-mail us at info@linuxjournal.com.

mailto:info@linuxjournal.com


Resources

World Wide Web Consortium URL: www.w3.org

Arena Information: www.w3/org/pub/www/Arena

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

http://www.w3.org
http://www.w3/org/pub/www/Arena
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

Finding Files and More

Eric Goebelbecker

Issue #20, December 1995

All about the find command. 

Not long after getting their first Linux system, new users usually need to locate
a file somewhere on their system. So they learn the following command from a
friend, or maybe a book or magazine:

$ find / -name filename -print

Now while this command does work perfectly fine, the syntax does seem
awkward to people unfamiliar with the find command. Why should we have to
specify print? [Note: On Linux systems, and other systems that use GNU find,
we don't. But standard Unix find insists on it, so you might as well get used to it
if you use Unix as well as Linux.]

For that matter, why should we have to specify name? Why not just find 

filename? It's this seemingly cryptic structure that makes find one of the
most under used commands in the Unix toolbox.

A look at the find man page (on any system, not just Linux) completes the
confusing picture. For someone not familiar with Unix, find's “operators” and
“expressions” make it an awfully complicated program just for locating files.

If all you want to do is locate a file, there is a better way to do that:

locate filename

This will work on a properly set-up Linux system with GNU find. Why have a
complicated command like find when we already have a simple command like 
locate? Because find is good for much more than just finding files. (Good Linux
distributions some with update properly set up. If yours isn't, you can run 
updatedb as root to update the database it uses, or simply use find as shown
above).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


The Caldera/Redhat system that I use at home has several entries in the
crontab that run this command:

find /tmp/* -atime +10 -exec rm -f {} \;

This command deletes any files in /tmp that haven't been accessed in the past
ten days. The fact that find only deletes files that haven't been accessed in the
past ten days rather than files that were created that long ago is a subtle, but
very important point. Find gives us access to the very valuable set of
information stored about files and directories in Unix filesystems.

Like most Unix filesystems, the second extended filesystem (“ext2”) that is used
on most Linux systems stores a more extensive set of data about files than just
their name, size and last-change-date the way systems such as DOS do. It also
stores an owner and group, access mode, the dates that the file was last
modified and accessed, the date that the file last changed status, and the type.
(Don't worry, we'll explain these as we go).

With the exception of the names, all this information is stored for each file and
directory in a structure called an inode. In Unix filesystems, directories are
simply files that contain a list of filenames with inode numbers.

Table 1 has a list of inode entry fields and how they are “translated” for the
different filesystem types supported by Linux. While this table may not mean
much to you yet, it should be self-explanatory by the time you finish reading
this article.



The Command Line

Let's analyze the find command line:

find starting-point options criteria action

• starting-point One or more directories from which to start
searching. The default is the current directory.

• options Modify the methods used for searching in several ways.

• criteria Specify which files are chosen, and which are ignored. All files
found are chosen by default.

• action What to do with the files that are chosen. GNU find has a default
action of -print, but standard Unix find has no default action, and will
abort and complain unless an action is explicitly provided.

The Starting Point

The starting-point parameter has two effects on find's actions. The most
obvious is that it specifies in which directory (or directories; there can be more
than one starting point) to start looking for files. The other effect is on how the
chosen filenames are treated, as this example shows:

$ cd /usr/X11/man
$ find man5 -print
man5
man5/XF86Config.5x
man5/pbm.5
man5/pgm.5
man5/pnm.5
man5/ppm.5
$ find /usr/X11/man/man5 -print
/usr/X11/man/man5
/usr/X11/man/man5/XF86Config.5x
/usr/X11/man/man5/pbm.5
/usr/X11/man/man5/pgm.5
/usr/X11/man/man5/pnm.5
/usr/X11/man/man5/ppm.5

When a user is simply looking for a file, this difference in behavior does not
matter very much. But when you want to use the output from find to drive
another program, it can be very important, depending on the program being
driven.

In addition to the starting point, we have control over some other aspects of
find's behavior, such as how it should handle soft links, how to evaluate file
timestamps and how deep to follow directory structures. These are controlled
by options.

The -follow option tells find to follow soft (or symbolic) links to the actual file. A
soft link is a file that “points” to another file. To demonstrate this option, create



(as a normal user, not as root) a soft link with ln in your home directory that
points to file that belongs to root.

$ cd
$ ln -s /vmlinuz ./kernel

Now use ls to produce a long listing for the file.

$ ls -l kernel
lrwxrwxrwx ... kernel -> /vmlinuz

The first column of the mode, l, tells us it is a soft link. We also are told what file
the link “points” to.

Now let's demonstrate the effect of find's -follow option by searching through
the directory for files belonging to root, using it. (uid 0 is root; we'll cover the -
uid option in more detail later.)

$ find . -uid 0 -print
nothing is printed
$ find . -follow -uid 0 -print
./kernel

You created the link to the kernel, so you own the link, called ./kernel. But the
file /vmlinuz is owned by root.

The -daystart option modifies the behavior of find when it comes to evaluating
time. When -daystart is specified, find will measure days from the beginning of
the day instead of from 24 hours ago. (We will cover the parameters related to
time later.)

Frequently a user will need to find a file that he or she knows is somewhere on
local hard disk, and not on a mounted cdrom or network volume. An easy way
to keep find from straying to these other disks is with the -xdev option.

$ find / -name document -print

will cause find to search for the file “document” in every directory under /,
which can be very slow with a CDROM or network filesystem mounted.

$ find / -xdev -name document -print

will instead cause find to limit its search to the device that / is mounted on. (An
alias for -xdev is -mount) Of course, if you have more than one local filesystem,
you will need to execute a different search for it. Perhaps

$ find / /usr -xdev -name document -print

if you have two partitions, one for / and one for /usr. Alternately, you can say



$ find / -fstype ext2 -name document -print

if all your local partitions are ext2 filesystems.

Another way to save time on searches is to use the options related to directory
depth.

$ find /usr -maxdepth 4 -name document -print

will limit find's search for document to directories four level deep or less
“under” /usr.

Another option related to directory depth is -depth, which causes the
directories to be selected before any files in them. We'll see later why this is
useful.

The -noleaf option is used for searching filesystems that aren't Unix-like. Table
1 tells for which filesystems specifying -noleaf may speed up your search.

We already had an example of finding a file by name. Other mechanisms for
matching filenames are -path, which matches by directory name, -iname, which
is similar to -name but case insensitive, and -ipath, which is also case
insensitive.

Pick and Choose

Criteria allow you to select files.

Each file has access, status, and modification times, and find provides three
time-based criteria, one for each of these values. They can be checked in
increments of days or minutes, and files can be compared based on these
times.

The modification time is set every time the file's contents are changed.

$ find . -mtime +10 -print

will print out files that have not been modified in the past ten days, similar to
our second example.

In the previous example we used the plus sign to signify “more than.” In
addition to this, find also supports the minus sign to indicate less than.

$ find / -mtime -5 -print



will print out files that were accessed less than 5 days ago. The absence of
these operators will cause find to choose exact matches. As mentioned before,
the -daystart option will modify the search so that the dates are based on the
most recent midnight instead of 24 hours before now.

To use minutes instead of days, use the -mmin criterion.

$ find . -mmin +10 -print

will output files that have been modified more than ten minutes ago.

The -newer criterion

$ find . -newer document -print

will output files that have been modified more recently than document.

The command sets both the access and modification times on files. If the file
does not exist, it will be created. We can use it for an example.

$ touch foo

will create a file named “foo” in the current directory, if there isn't already one
there. Now,

$ find -mmin 1 -print

should output foo, but

$ find -mmin 2 -print

should not.

For access time, which indicates the last time the files were opened, find has
similar options. For days there is -atime, for minutes -amin and for
comparisons -anewer.

Status time initially indicates creation time, and then follows any modifications
to the file or its inode. It can be used with -ctime, -cmin, and -cnewer. These
criteria match files based on the last time a file's ownership, access mode, or
other characteristics have been changed.

Find also has a -used option. It will match files that have been accessed since
their status was last changed:

find -used +2



will find files that have been used more than two days since their status was
last changed.

I've mentioned file modes a few time throughout this article. File modes
express which users may perform certain operations on a file, what type of file
it is and also some other information about the file. find allows us to match files
based on their mode.

Before I go over these options, I will explain file modes and how they are
displayed and set.

Users most commonly come in contact with file modes when they concern file
ownership and access. A file belongs to an owner and a group, therefore it
follows that access is controlled with respect to three entities: owner, group
and world. (“World” is made up of users that are not the owner and do not
belong to the affiliated group.)

Access is controlled with respect to three actions: Reading, writing (which
includes deletion) and execution. Let's look at the output of a long listing with
ls.

$ ls -l foo
-rw-rw-r-- 1 eric staff  0 Sep  6 22:55 foo

(I've deleted some of the spaces ls normally creates in order to fit the entire
output.) The leftmost column of the output has ten characters that show use
foo's mode and file type. From the left, the first is used by ls to show us the
type of file. For example, if it were a link or directory we would see an l or d
there.

The remaining nine characters show us the access mode. In groups of three,
the show us the rights for owner, group, and world, in that order. Each triplet
has a field for read r, write w and execute x.

$ chmod 777 foo
$ ls -l foo
-rwxrwxrwx 1 eric staff  0 Sep  6 22:55 foo

We have turned on all permissions for all users on the file “foo”.

The chmod command can use two different kinds of notation, symbolic and
octal. While symbolic notation is easier to remember for most people, I used
octal notation, because it is the format for modes that find expects. With this
notation each number represents the octal permissions for each user class.



The permissions are calculated by adding the following:

• 4 Read
• 2 Write
• 1 Execute

So if you want to give the owner of a file full permissions and group and world
only read and execute permissions, you want to “set” all bits for owner, and the
read and execute bits for the others:

Owner = 4 + 2 + 1 = 7
Group = 4 + 1     = 5
World = 4 + 1     = 5

So the command would be:

$ chmod 755 program
$ ls -l program
-rwxr-xr-x 1 eric  staff 106410 Sep  6 22:55 program

The listing shows the mode we expected.

Back to find: the -perm criterion accepts this type of notation.

$ find . -perm 777 -print

would find all of the files in and under the current directory that have read,
write and execute permissions set for all users.

The -perm option also supports the + and - operators.

$ find . -perm +600 -print

would output any files that are readable or writable by their owner.

$ find . -perm -600 -print

would output any files that are readable and writable by their owner.

Therefore the + acts as a boolean “or” and the - acts as a boolean “and”.

The ability to find files based on their permissions is an important security tool.
Later, I will cover some important special file modes, and how find can help
protect a system from attacks that use them.

File size is another option offered by find. File sizes may be specified in 512 byte
blocks, two byte words, kilobytes or just bytes. Since size is a numeric option +
and - are also supported.



$ find . -size +4096k -print

will print the names of any files larger than four megabytes.

$ find . -size -1c -print

will print the names of any files smaller than one byte. The -empty option also
matches empty files.

For 512 byte blocks the number should be followed by a “b”, for 2 byte words a
“w”.

There is one caveat when searching for files by size. Some files, such as /var/
adm/lastlog, have more space allocated than they actually use. These files are
known as “sparse” or “holey” files. Like ls, find will report these files by the
space they have allocated, not the space they are actually using. If you have any
doubt about how much space a file is using, use the du command.

$ ls -l /var/adm/lastlog

reports a size of 16032 (15k) on my system;

$ du -k /var/adm/lastlog

reports only 3k.

Our first example showed us how to find a file when we know the exact name.
Find will also accept the * wildcard, but the file name must then be quoted in
order to prevent the shell from expanding the file name before passing it to
find.

$ find / -name "*gif" -print

will output all of the files ending in “gif” on the entire system.

In addition to simple wildcards, find also supports regular expressions with the 
-regex option.

$ find . -regex './[0-9].*' -print

will locate any files in the current directory that begin with a number. Note that
the regular expression is applied to the entire path, which makes the
expression rather difficult to write. For more information about regular
expressions see the man pages for grep or the article in the October issue of 
Linux Journal.

Another search criterion is file type.



$ find / -type d -print

will list all of the directories. Here is a list of the file types and the appropriate
letter to use to search for them.

• b block special files such as a disk device.
• c character special files such as a terminal device.
• d directory
• p named pipe
• f regular file
• l symbolic (soft) link
• s socket

If you are unfamiliar with any of these file types, don't worry. You can learn as
you go.

Files can also be matched by user of group id. As demonstrated earlier,

$ find . -uid 0 -print

will output all files belonging to root.

$ find . -uid 120 -print

will output all files belonging to the user with UID 120.

To make things easier,

$ find -user eric -print

will output all files belonging to eric.

Find also has similar options for groups: -gid and -group.

More than printing!

Now that you know how to locate just about any file, what can you do with
them besides print their names?

$ find . -fprint foo

sends a list of the files in the current directory to a file “foo”. If the file does not
exist it is created. If it does, its contents are replace.

Find also offers the -printf action. This allows output to be formatted.



$ find . -printf 'Name: %f Owner: %u %s bytes\n'

produces a table of files with their name, owner, and size in bytes.

The -printf action has many predefined fields that cover all of the information
available for a file. See Table 2 for an incomplete list of options. Find also has a -
fprintf switch which will send the output to a file, like -fprint.

Table 2. printf Options

Escape Sequences\a - Alarm Bell\b - Backspace\f - Form Feed\n - Newline (not
provided automatically)\c - Carriage return- Horizontal tab\v - Vertical tab\\ - A
literal backslash\c - Stop printing and flush output

Formatting Sequences%b - File size in 512 byte blocks%k - File size in 1k
blocks%s - File size in bytes%a - Access time in standard format%A - Formatted
access time (see man page for options)%c - Status time in standard format%C -
Formatted status time (same a %A)%F - Type of filesystem%p - File name%f -
File name with path removed%P - File name with find argument removed (file
instead of ./file)%u - User name%g - Group Name

(See the man page for complete listing)

A third option for output is -ls. This option produces a listing of files that is the
equivalent of the output from ls -idls. The -fls option will send this to a file.

Of course, simply producing formatted lists of files is not the limit to find's
usefulness. Find also allows us to execute commands on them with -exec and -
ok. -exec executes a command for each file that matches.

Our earlier example demonstrates a common use for the -exec option: deleting
old and unused files.

$ find /tmp/* -atime +10 -exec rm -f {} \;

After the -exec switch itself, we specify the command, any options (such as the -
f), and then {}, which represents the matched files. The command line must
then be terminated with ; (the \ is to prevent shell expansion).

$ find . -type f -exec grep -l linux {} \;

would execute the command grep -l linux on all regular files in and under the
current directory.

The -ok switch operates the same way, but will prompt the user for
confirmation before executing the command on each file.



$ find . -ok tar rvf backup {} \;

This command will descend through the current directory and below, asking
the user which files should be added to the tar archive “backup”.

This leads us into some practical uses for find.

Sometimes it's necessary to duplicate a directory or directory structure. For this
purpose many users utilize the cp command with the -r option. However, this
command does not always create an exact copy!

Create a directory with a file and a link in it.

$ mkdir test
$ touch test/bar
$ ln -s /vmlinuz /test/foo
$ ls -l test
-rwx--x--x eric staff 0 Sep  9 bar
lrwxrwxrwx eric staff 8 Sep  9 foo -> /vmlinuz

Now copy it with cp -r

$ cp -r test test1
$ ls -l test1
-rwx--x--x eric staff      0 Sep  9 11:18 bar
-rw-rw-r-- eric staff 318436 Sep  9 11:18 foo

The cp command followed the soft link and copied the kernel into the new
directory!

Let's try a different approach:

$ rm -r test1
$ cd test
$ find -depth -print | cpio -pdmv ../test1
$ ls -l ../test1
-rwx--x--x eric staff 0 Sep  9 bar
lrwxrwxrwx eric staff 8 Sep  9 foo -> /vmlinuz

This method uses cpio to copy files to the new directory. Find produces the file
list by descending the directory structure. Even though our example was only
one directory deep, we know that find can descend an entire directory
structure. We also know that we can also control which directories it descends
and which files it outputs.

In the above command I added the -depth option. It insures that directory
names are output before the files in them. This allows cpio to create the
directories before trying to copy files into them.

The cpio command is another multipurpose tool in the Unix toolbox. It can
create archives in a variety of formats and also extract from them. It also
handles the output of find's -print option perfectly. Combined, these tools could



form a simple backup system. (Please note: I am presenting this purely as an
example. Systems that support many users or that have irreplaceable data on
them should use more extensive and robust backup systems.)

$ find . -depth -print \
  | cpio -ov --format=crc > /dev/fd0

find reads the contents of the current directory, and the filenames are piped to
cpio, which copies the files to the floppy in the System V R4 archive format with
CRC checksums. (This format is preferred to the default since it is platform
independent, supports larger hard disks, and provides at least simple error
checking.)

When cpio reaches the end of each floppy it prompts us with:

Found end of tape.  To continue, type device/file
name when ready.

In order to continue, type:

/dev/fd0 RETURN

Of course, if you are lucky enough to have a tape drive or other storage system,
you may not have to do this, though cpio can also span tapes if the archive
does not fit on one.

This system does have at least one drawback: if the data to be stored will not fit
on one unit, the backup cannot be fully automated.

The first backup of my home directory spanned ten floppies. I reviewed the
contents and noticed two subdirectories that probably were not worth backing
up, so I altered find's arguments:

$ find . \
  \( -path ./.netscape-cache -o -path ./lg \)\
  -prune -o -print | \
  cpio -ov --format=crc > /dev/fd0

This introduces some more find options. The \( and the \) are parentheses with 
\ to prevent shell expansion. Find allows parentheses to logically group
expressions. This was necessary since I have two expressions in the command

\( -path ./.netscape-cache -o -path ./lg \)

Inside the parentheses we have two -path statements separated by -o. This is a
find “or” statement.

\( -path ./.netscape-cache -o -path ./lg \) -prune



Find's -prune option causes find to not enter a directory. Therefore, we can
translate the above to “If the path is ./.netscape-cache or ./lg do not descend
into the directory.”

After this clause we see another -o statement. If the file does not meet the
criteria for pruning, it is printed instead.

So, my entire home directory with the exception of my Netscape cache and lg
directory is now backed up.

This is fine for an initial backup. But what about next week when I want to
backup my directory, but I've only really touched a few files?

$ find . \
  \( -path ./.netscape-cache -o -path ./lg \) \
  -prune -o \( -mtime -7 \) -print | \
  cpio -ov --format=crc > /dev/fd0

This adds one more clause: “If the file is not under the netscape cache or the lg
directory, check if it has been modified in the past 7 days. If it has, then print
the name.” The name is then sent to cpio to archive. 

Obviously these command lines can get very complicated. It's usually a good
idea to test them by piping the output through more before using cpio.

In addition to -o find also has an “and” operator, -and, and a negation operator 
-not. When multiple match criteria are specified, -and is implied.

$ find -mtime -5 -type f -print

prints files that have been modified during the last five days and are regular
files.

$ find -mtime -5 -not -type f -print

prints things that have been modified during the last five days that are not

regular files: directories, soft links, etc.

But wait, disaster has struck! Your (sister, son, daughter, little brother, mom,
spouse, whoever) has deleted a very important file! Time to use that backup.

$ cpio -t < /dev/fd0

produces a table of contents from the archive. As it does during backup
operations, cpio prompts for the next disk while it reads the table of contents.

$ cpio -i core < /dev/fd0



The -i switch tells cpio to extract the named file. The absence of a file name
cause cpio to restore the entire archive.

System maintenance tasks can also be simplified with find. Our second
example demonstrated using find to clean out older files.

$ find /home -name core -o -name foo \
  -exec rm -f {} \; 2> /dev/null

This command cleans out any core dumps or files named “foo” from home
directories. (Although some files named “foo” can be very important!)

$ find /var/adm/messages -size +32k \
  -exec Mail -s "{}" root < /var/adm/messages \;
  -exec cp /dev/null {} \;

This is another example from the crontab on my Caldera/Red Hat system. It
uses the implicit “and” function to mail the system messages file to root and
then empty it.

Find also has an important security application. Two of the file modes that I did
not cover earlier are SUID and SGID. These modes provide a user with the
rights of the owner or group of a program when the program is executed.

An example of this is the passwd program. This program allows users to
change their password. In order to do this the /etc/passwd (or /etc/shadow) file
must be modified, which is a function only root should be able to perform.
Since the passwd program belongs to root and has the SUID mode set, it can
modify the necessary file. When passwd completes the user's rights return to
normal. The passwd program is responsible for making sure the user can't do
anything wrong while acting as root.

$ ls -l /usr/bin/npasswd
-r-s--x--x 1 root /usr/bin/npasswd

(/usr/bin/passwd is linked to /usr/bin/npasswd on my system.) The s in the
execute field for owner signifies SUID. A SGID program would have s in the
execute field for group.

This mechanism has obvious security implications. A user (or invader) who has
compromised a system could install a program (such as a shell) with this mode
set and then do whatever they wish whenever they want by running that
program.

In octal notation SUID is expressed as 4000 and SGID is 2000, so

$ find / -perm 4000 -print



produces a list of SUID files on a system.

$ find / -type f \( -perm 2000 -o -perm 4000 \) \
  -print

produces a list of regular files that have SGID or SUID mode set.

This list could be saved to a file (with -fprint) and compared each day with the
output from the previous day.

This article does not cover every option for find. This was also only a cursory
explanation of filesystems and access modes. Hopefully, I was able to provide
you with enough information to make using Linux a little easier and a lot more
rewarding.

Resources

Essential System Administration by Æleen Frisch, O'Reilly and Associates

Practical Unix Security by Simson Garfinkel and Gene Spafford, O'Reilly and
Associates

The manual pages.

Eric Goebelbecker is a systems analyst for Reuters America, Inc. He supports
clients (mostly financial institutions) who use market data retrieval and
manipulation APIs in trading rooms and back office operations. In his spare
time (about 15 minutes a week...), he reads about philosophy and hacks around
with Linux. He can be reached via e-mail at eric@cnct.com.

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:eric@cnct.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


    Advanced search 

New Products

LJ Staff

Issue #20, December 1995

Tcl and Tk Reference Card, Soft Braille for Linux: BRLTTY 0.22 BETA Release and
more. 

Tcl and Tk Reference Card

Specialized Systems Consultants, Inc. (SSC) announced the publication of the Tcl
Pocket Reference and the Tk Pocket Reference. The Tcl (“tickle”) Reference
describes Tcl 7.3; the Tk (“tee-kay”) Reference describes Tk version 4.0. Tcl is a
small, embeddable, extensible scripting language. Tk is a Toolkit of widgets,
which are graphical objects similar to those of other GUI toolkits such as Xlib,
Xview and Motif. When Tcl and Tk are used together, the Tcl/Tk programming
system can be used to rapidly build useful applications (such as adding X-based
front-ends). The Tcl and Tk References are sold individually for $3.00 each or
together as a package (ISBN: 0-916151-80-8) for $4.50.

Contact: SSC, Inc. P.O. Box 55549, Seattle, WA 98155 (206) 782-7733 Fax: (206)
782-7191 E-mail: info@linuxjournal.com. URL: http://www.ssc.com/

Soft Braille for Linux: BRLTTY 0.22 BETA Release

Nikhil Nair and James Bowde announced the first public release of BRLTTY, a
software system to allow access to the console of a Unix system for users of
soft Braille displays. BRLTTY requires a Linux system with kernel version 1.1.92
or later. BRLTTY only works with text-mode applications. The package is
available at sunsite.unc.edu in the directory /pub/Linux/utils/console.

Contact: nn201@cam.ac.uk (Nikhil Nair) or jrbowden@bcs.org.uk (James
Bowden)

Archive Index Issue Table of Contents 

    Advanced search 

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:info@linuxjournal.com
http://www.ssc.com
mailto:nn201@cam.ac.uk
mailto:jrbowden@bcs.org.uk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


Copyright © 1994 - 2019 Linux Journal. All rights reserved. 



    Advanced search 

Porting Linux to the DEC Alpha: The Kernel and Shell

Jim Paradis

Issue #20, December 1995

Last month, Jim described the task of porting the kernal and basic environment
needed to get to the shell prompt. In this last of 3 parts, he tells us about
building a real environment. 

Achieving the shell prompt was only the beginning of the trial, not the end. Now
we had to get other utilities working so as to allow us to debug more of the
system and to make it into a real, usable UNIX-like system. 

I set Brian Nelson to the task of porting more utilities, starting with the “fileutils”
and “shellutils” subsets of the MCC 1.0+ distribution. Meanwhile, I realized that
better debugging tools would expedite the debug process, and I started
thinking about implementing some kind of remote debugger support for gdb.
My first implementation was under the ISP CPU simulator. The reason for this is
that I could add code to ISP to examine and modify the state of the machine
and communicate with a debugger without having to code a breakpoint
handler into the kernel itself.

GDB has a remote debugging protocol built into it; all I needed to do was to add
code to ISP to respond to gdb commands and to encode the simulated machine
state for GDB's consumption. Getting this all working was only a few days'
work.

Device Drivers

While all this was happening we realized that Linux/Alpha was turning into a
serious project and that we could use some help in the device driver space.
While console callback drivers had served admirably to get us up and running,
they were not equal to the task of supporting a production system. We
recruited Jay Estabrook from the Digital UNIX group in this capacity, and he has
proved to be an immensely valuable addition to our team. Within his first two

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1


weeks with the group he produced a native text-mode VGA driver and a native
keyboard driver for Linux on the DEC 2000 AXP (“Jensen”) series.

Porting device drivers to Linux/Alpha presents some interesting challenges.
Fortunately, many of the problems only needed to be solved once and the
results would be applicable to many different drivers.

The Alpha CPU has no concept of I/O bus access; there is no Alpha equivalent
of the Intel inb/outb instructions for communicating with the I/O bus. In order
to implement a PCI- or EISA-based Alpha system, some sort of “glue” logic is
needed to translate Alpha load/store accesses into I/O bus accesses. On
systems based on the DECchip 21064 and 21164 CPUs, this glue logic is
implemented in an external chipset (DECchip 21071 series). On systems based
on the DECchip 21066, this glue logic is built into the CPU. This glue logic sets
aside certain areas of the system physical address space for communicating
with the I/O busses. To perform a bus access, one takes such information as
the I/O port number and the size of the transfer and encodes it into a special
memory address (This encoding is different for the different glue logic
implementations). One may then load the data from or store the data to this
address.

Interrupt handling is also different on Alpha systems. On most Intel-based
systems, the mapping between bus IRQs and interrupt vectors is fixed and
straightforward, and the hardware dispatches directly to the interrupt vector
associated with a particular IRQ. On Alpha, all interrupts are dispatched by
PALcode. The Digital UNIX PALcode vectors all device interrupts to a single
routine. One of the arguments to this routine is a number (called the “SCB
vector” for reasons I don't need to go into here) indicating which interrupt was
received. Unfortunately, the mapping between bus IRQs and SCB offsets is not
the same across all platforms. This means that we need extra code in the
interrupt handling path to map the SCB vector back to an IRQ number. In fact,
there are different versions of the mapping routine for the different platforms.

It turns out that many Intel Linux device drivers rely on the fact that the BIOS
puts the device into a known state before the operating system even sees it. We
discovered this when we were debugging the interrupt handling for the
keyboard driver (and, later on, the SCSI driver). Apparently the interrupt
controller on Intel boxes is initialized by the BIOS to trigger on the transition of
an IRQ line (edge triggering) rather than on the state of an IRQ line (level
triggering). We were having no end of problems with “spurious” interrupts until
we added code to the CPU initialization routine to set the interrupt controller
properly.



The Miniloader

While our early decision to use the SRM console was good to get the project off
the ground, it turns out that the SRM console is not the best choice for Linux.
First of all, the SRM console is memory-hungry because it must implement
numerous functions required by OpenVMS and Digital UNIX. Many of these
functions are not needed by Linux. Second, and more serious, is the fact that
the SRM console is not freely redistributable. Digital charges a substantial
license fee to third parties for resale rights to the SRM firmware, as well as a
per-unit charge for each copy of the SRM firmware sold by Digital or a third
party. While the end-user typically never sees these charges, they do serve to
raise the price of the hardware when it is sold in a Digital UNIX or OpenVMS
configuration. In addition, requiring the SRM console for Linux/Alpha would
present a significant burden to clone vendors who wished to build and sell
Alpha systems for the Linux marketplace.

For these reasons, we decided to investigate the possibility of developing a
freeware “miniloader” for Linux/Alpha. The miniloader could be much smaller
than the SRM console because it needs to implement only the functionality
necessary to initialize the system, load the PALcode, and load Linux. It could
also be freely redistributable in source and binary form.

Unfortunately, developing a replacement for the console firmware is a non-
trivial undertaking. Fortunately, however, we had help in the person of Dave
Rusling from the Digital Semiconductor facility in Reading, England. Dave had
much experience in low-level hardware support on the evaluation boards
produced by Digital Semiconductor, and he had already done significant work
for the Linux/Alpha project in the area of PCI support. He eagerly took on the
task of developing the miniloader.

The miniloader consists of system initialization code, an OSF-compliant
PALcode library, a bootstrap loader, and console callback routines. It presents
to the bootloader and kernel an interface similar to that seen in the SRM
console, with stripped-down functionality. The miniloader only implements
those SRM features and callbacks that are used by Linux. As of this writing, the
miniloader has succeeded in booting Linux on several models of Digital
Semiconductor evaluation boards, as well as on the low-cost AXPpci/33
“NoName” motherboard and the high-performance “Cabriolet” motherboard.

Cutting Over to 1.2

While we were working on our 32-bit port, Linus was toiling away in Helsinki on
his 64-bit Alpha port. We knew that we would want to cut over to using his code
base at some point so that we would be in sync with the rest of the Linux
community. The main question was when we would do the cutover. Our port



had more demonstrable functionality earlier (e.g. device support, networking,
utilities), but Linus was catching up fast. We decided to continue working on the
32-bit port for demonstration purposes while keeping track of Linus' progress,
and we would cut over to Linus' code base when doing so would yield a system
of roughly equivalent functionality.

This point came in March, 1995 when Linus posted a message to the linux-
alpha mailing list with the subject “self-hosting linux on ftp.cs.helsinki.fi”. While
one of our own major goals was to have a self-hosting Linux/Alpha system, we
had not been able to realize it due to the immense complexity of porting the
GNU compiler suite in our cross-development environment. Linus very neatly
sidestepped the entire cross-build issue by making his Linux/Alpha system calls
compatible with their Digital UNIX counterparts. Therefore, he could achieve
self-hosting simply by running the compilers from his Digital UNIX system on
his Linux/Alpha system.

While this self-hosting environment did not meet our criterion of being 100%
freeware, it was a useful starting point. Instead of building the GNU tools in a
cantankerous cross-development environment and testing them on an
immature operating system, we could prototype and debug our entire
development environment on a Digital UNIX system. When we were satisfied
with its functionality, we could then copy it over to a Linux/Alpha system with
reasonable assurance that it would work. This, in fact, is exactly how we put
together the self-hosting demo that we exhibited at DECUS in May, 1995 (“Linux
at DECUS”, Linux Journal issue 15, July 1995).

Getting By With a Little Help From Our Friends...

An operating system is much more than just a kernel, as any of the creators of
Linux distributions could tell you. In order to be able to provide all of Digital's
Linux/Alpha contributions to the Linux community free of charge, we
necessarily had to limit the investment we made in the project. As of this
writing, Digital is funding three full-time engineers, a part-time product
manager, a part-time technical writer, and several loaner Alpha systems
(including the Alpha systems that Linus has been using). In my project plan
outline for Linux/Alpha I pointed out that Linux was unique in that we could do
the project with such limited resources. Given the history of Linux, I reasoned,
once the Linux/Alpha code became available, developers all over the net would
add functionality and fixes. My prediction turned out delightfully true. Several
people, both inside and outside of Digital, made significant contributions to the
project at no cost to Digital. The result is of enormous benefit to both Digital
and the Linux community as a whole.



Linus Torvald's own contributions, of course, are legendary. I mention him here
because without his tireless work the project would have taken a different turn
and probably would not be as successful as it is today (Linus, if you're reading
this, we could use a little breathing room between releases. At least let me
finish compiling one release before you turn out the next!)

Another major champion and supporter of the Linux/Alpha project is David
Mosberger-Tang of the University of Arizona. He was literally the first on his
block to own an Alpha-based AXPpci/33 motherboard, and he provided all of
the initial patches to enable both the 32-bit and 64-bit kernels to function on
that platform. He has also been a valuable resource and a second set of eyes to
assist in untangling sticky problems. In addition, he has ported numerous
system and utility packages that would have taken us days or even weeks to do
ourselves in our spare (ha!) time.

It has been said that “any sufficiently advanced technology is indistinguishable
from a rigged demo,” and this could certainly be said of the DECUS demo that
we staged. While the toolset was capable of building and linking the kernel, the
64-bit C runtime library was not yet stable enough to build user utilities. Fixing
this was on our “to do” list along with a lot of other things, but it turned out we
didn't have to. Shortly after we released the 64-bit development tools to
Digital's FTP area, Bob Manson of Ohio State University released a working 64-
bit library based on our earlier 32-bit work. Bob also released several useful
sets of utilities that, again, it would have taken us weeks to get around to
porting on our own. He is also rumored to be working on modifying gcc to
generate floating-point code that is capable of recovering from exceptions.

The BLADE Releases

After showing off Linux/Alpha at DECUS, it became clear that some kind of end-
user-installable distribution was needed. At that point, Linux/Alpha resembled
in some ways the early days of Intel Linux: the “system” consisted of a motley
collection of source and binary archives scattered over several FTP sites on
different continents. Putting together a running system out of these pieces was
a job only a dedicated hacker would be willing to go through with.

One difference between then and now is that now there are high-quality
commercial Linux distributions (Plug-And-Play, Red Hat, and Slackware, to
name just a few) that can serve as the basis for equivalent Linux/Alpha
distributions. We knew, though that it would be some time before these
distributions were ported and qualified for Linux/Alpha. In oder to sustain the
momentum built up at DECUS, we needed some kind of Linux/Alpha
distribution sooner than that. That's when we decided to embark on a project
designed to become obsolete: BLADE. BLADE stands for Basic Linux Alpha 



Distribution Expletive (I picked the name by starting with “LAD” for “Linux Alpha
Distribution” and grepping through /usr/dict/words for this combination and
playing acronym games with some of the results). BLADE is a Linux/Alpha kit
that can be installed without needing to build kernels or use a host
development system.

BLADE was designed to be deployed quickly, and it's pretty rough around the
edges. There's only one automatic installation script, called install_subset. A lot
of steps that are done automatically by other distributions must be handled
manually in BLADE. We provide full step-by-step instructions, though, so the
user knows what steps need to be taken.

The first release of BLADE (V0.1) provided basic functionality and a
development system in character-cell mode. There was no networking, no GUI,
and a limited utility set. However, it was self-hosting, and it came with kernel
sources and the gnu compiler suite. One could build the kernel or any utilities
one desired using BLADE. In fact, we used BLADE V0.1 as our primary
development system for BLADE V0.2. BLADE V0.1 was based on a modified
1.2.8 kernel and supported the AXPpci/33 only.

The second release of BLADE (V0.2) added more utilities and networking
functionality. Graphics were still not available, but one could perform
development and basic networking (ftp, telnet, rlogin) in character-cell mode.
BLADE V0.2 was also the first release to support the Linux/Alpha Miniloader
(aka MILO/Alpha) on the AXPpci/33. MILO is a drop-in system firmware
replacement that allows the user to boot and run Linux without requiring the
SRM console firmware. BLADE V0.2 also added a kernel boot disk for the Digital
Semiconductor 275-MHz EBPC/64 evaluation motherboard. This is the fastest
system to date that supports Linux. BLADE V0.2 is also based on the modified
1.2.8 kernel.

Currently under development is BLADE V0.3. BLADE V0.3 will be based on a 1.3
kernel and will add support for the X window system (see below). It should also
support more system types.

X Marks The Spot

Thanks to the tireless efforts of my colleague Jay Estabrook, as of this writing
X11R6 is up and running on Linux/Alpha. Most of the standard libraries and
client executables are in place. At the present time, only the S3 server has been
ported, and it has only been qualified on a few video cards. The current plan is
to let this be a sample server and solicit other parties (e.g. the XFree86
Consortium) to port other servers.



One major problem with supporting multiple video cards has to do with the on-
board ROM BIOS that many cards have. This BIOS typically contains code to
initialize the card and to set video modes. Unfortunately, this BIOS is nearly
always written in 80x86 assembly code. To execute it on an Alpha system
requires an Intel execution engine. We are investigating several strategies to
provide this functionality as part of MILO/Alpha in source form, and rumor has
it that our old friend David Mosberger-Tang has made good progress in this
area.

Surf's Up!

As I write this, Linux/Alpha is being exhibited at UNIX Expo in New York City in
all of its X-windows glory. We have ported the freeware web-browser chimera,
and these systems are available for surfing the web and for connecting to
remote systems on the Internet via rlogin, telnet, and ftp. In fact, on setup day
several people from non-net-connected boths came by to use these systems to
retrieve forgotten files from their home systems. This includes yours truly,
embarrassingly enough. We needed to connect to the serial port on our PC64
system to use the ROM debug monitor, but the version of Linux/Alpha on the
other system did not have kermit, cu, tip, or any other terminal emulation or
serial connection program. No problem: I ftp'ed over to David Mosberger-
Tang's archive at ftp.azstarnet.com and retrieved the Linux/Alpha version of
kermit. We were in business in a few minutes.

In short, Linux/Alpha is starting to feel like a real Linux system!

Future Directions

Despite our great progress, much work remains to be done on Linux/Alpha:

• As mentioned above, we need to deploy some sort of BIOS-emulation
facility so that we can execute the proprietary initialization code on some
expansion cards. While initial code exists and works, it does not support
the real-mode 32-bit instructions that are used in the BIOSes of some
cards.

• We need to tackle the great unsolved problem of floating-point exception
handling. Programs that are floating-point intensive are not likely to work
until this is done.

• We need to write a character-cell driver and an X server for the TGA
graphics adapter that is provided with Multia and several other Digital
Alpha systems.

• We desperately need shared libraries! As of this writing, the statically-
linked executables in Linux/Alpha are rather large (around 200Kb for a



typical utility, several megabytes for the X server). Shared libraries will
decrease both disk space requirements and virtual-memory usage.

• We need to work on compiler optimizations. The Alpha support in gcc
does very good optimizations in some places, not so good in others. In
addition, the compiler does not yet take advantage of Alpha's multiple-
instruction issue feature. This feature allows more than one instruction to
be issued per clock cycle, but only certain combinations are allowed. By
carefully rearranging the instructions in the executable, one can take
advantage of this feature and achieve significant performance
improvements.

All in all, we are excited about the future. Linux/Alpha, even in its relatively
primitive state, feels like a real Linux system. Addressing the above areas can
only make it better!

Jim Paradis works as a Principal Software Engineer for Digital Equipment
Corporation as a member of the Alpha Migration Tools group. Ever since a
mainframe system administrator yelled at him in college, he's wanted to have a
multiuser, multitasking operating system on his own desktop system. To this
end, he has tried nearly every UNIX variant ever produced for PCs, including
PCNX, System V, Minix, BSD, and Linux. Needless to say, he likes Linux the best.
Jim currently lives in Worcester, Massachusetts with his wife, eleven cats, and a
house forever under renovation. He can be reached via e-mail at 
paradis@sousa.amt.tay1.dec.com and on the WWW at www.iii.net/users/
jrp.html

Archive Index Issue Table of Contents 

    Advanced search 

Copyright © 1994 - 2019 Linux Journal. All rights reserved. 

mailto:paradis@sousa.amt.tay1.dec.com
http://www.iii.net/users/jrp.html
http://www.iii.net/users/jrp.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/020/toc020.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Linux in the Real World
	Kevin Pierce
	Our Network
	Network Management
	The Web Server
	Printing
	Database
	Magazine Production
	Samba
	Other SSC Products
	Yes, We Use DOS Too
	What's Next?
	Resources

	Linux Journal Archives
	LJ Staff
	Features
	News and Articles
	Kernel Korner
	Programming Hints
	System Administration
	Novice to Novice
	What's Gnu?
	Stop the Presses
	Cooking With Linux
	Book Reviews
	Product Reviews

	Linux Journal Readers' Choice Awards
	LJ Staff
	Books
	Hardware
	Software

	Linux System Administration
	Æleen Frisch
	Making a New Disk Available to Linux
	The Filesystem Configuration File:
/etc/fstab
	Viewing and Modifying the Superblock
	Hints for Splitting Linux Across Two
Disks

	PracTcl Programming Tips
	Stephen Uhler
	Gathering the Data
	Analyzing the results
	Conclusions

	Caldera Network Desktop v 1.0
	Roger Scrafford
	The Package
	Red Hat
	Networking
	X windows
	Web Browser and Server
	Technical Support
	Installation
	Quirks
	Politics
	The future, Mr. Gittes
	Conclusion

	The Future Does Not Compute: Transcending the Machines in Our Midst
	Danny Yee

	Letters to the Editor
	Various
	Speedy Delivery
	Alternate Paper
	Not Paper

	Just Browsing
	Phil Hughes
	Resources

	Finding Files and More
	Eric Goebelbecker
	The Command Line
	The Starting Point
	Pick and Choose
	More than printing!
	Table 2. printf Options
	Resources

	New Products
	LJ Staff
	Tcl and Tk Reference Card
	Soft Braille for Linux: BRLTTY 0.22 BETA
Release

	Porting Linux to the DEC Alpha: The Kernel and Shell
	Jim Paradis
	Device Drivers
	The Miniloader
	Cutting Over to 1.2
	Getting By With a Little Help From Our
Friends...
	The BLADE Releases
	X Marks The Spot
	Surf's Up!
	Future Directions


